blob: 8936db6abe09125797843c749fc320250419b548 [file] [log] [blame]
/*
* Copyright (c) 2023-2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "ClTemplatePool2d.h"
#include "arm_compute/core/utils/helpers/AdjustVecSize.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/StringUtils.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/dynamic_fusion/sketch/gpu/components/cl/ClComponentDirectConv2d.h"
#include "src/dynamic_fusion/sketch/gpu/GpuKernelComponentGroup.h"
#include "support/StringSupport.h"
namespace arm_compute
{
namespace experimental
{
namespace dynamic_fusion
{
namespace
{
// Shape indexes for NHWC Datalayout
constexpr static int32_t height_idx = 2;
constexpr static int32_t width_idx = 1;
constexpr static int32_t channel_idx = 0;
} // namespace
ClTemplatePool2d::ClTemplatePool2d(ComponentId id,
const ArgumentPack<ITensorInfo> &tensors,
const Attributes &attributes,
const Settings &settings)
: IGpuTemplateComponentWriter{id, tensors}, _src{}, _dst{}, _attributes{attributes}, _settings{settings}
{
_src = this->tensors().get_const_tensor(TensorType::ACL_SRC_0);
_dst = this->tensors().get_const_tensor(TensorType::ACL_DST_0);
ARM_COMPUTE_ERROR_ON_NULLPTR(_src, _dst);
}
std::string ClTemplatePool2d::get_name() const
{
return "pool2d";
}
std::string ClTemplatePool2d::get_component_code(const ComponentGroup &comp_group) const
{
ARM_COMPUTE_UNUSED(comp_group);
// Condition to use 2x2 optimized kernel
if (_attributes.pool_size() == Size2D(2, 2))
{
return get_2x2_kernel_code();
}
else
{
return get_MxN_kernel_code();
}
}
std::string ClTemplatePool2d::get_MxN_kernel_code() const
{
const auto pool_type = _attributes.pool_type();
const bool fp_mixed_precision = (_src->data_type() == DataType::F16) && pool_type != PoolingType::MAX;
// Define pool op macro.
std::string pool_op = (pool_type == PoolingType::AVG) ? R"_(#define POOL_OP(x,y) ((x) + (y)))_"
: R"_(#define POOL_OP(x,y) (fmax((x), (y))) )_";
// Kernel start
// Note: If C is not multiple of N0, we shift back of PARTIAL_N0 elements to compute the leftover elements for get_global_id(0) == 0
// Note: If C is less than N0, N0 should be SHRINKED to the closest smaller N0. This operation is performed on the host side
std::string code = R"_(
//------------------ START KERNEL {{meta_kernel_id}} ---------------------
// IN_0(src) {{src}}
// OUT(dst, accum) {{dst}}
{
const int idx_out_c = g_ind_0;
const int idx_out_w = g_ind_1;
)_";
// Add macro for POOL_OP
code += "\n" + pool_op + "\n";
code += R"_(
const int idx_out_h = g_ind_2 % {{DST_HEIGHT}};
const int idx_out_n = g_ind_2 / {{DST_HEIGHT}};
)_";
// Define common variables.
code += R"_(
__global unsigned char *in_base_ptr = {{src}}_ptr + {{src}}_offset_first_element_in_bytes + idx_out_c * sizeof({{DATA_TYPE}}) + idx_out_n * {{src}}_stride_w;
__global unsigned char *out_base_ptr = {{dst}}_ptr + {{dst}}_offset_first_element_in_bytes + idx_out_c * sizeof({{DATA_TYPE}}) + idx_out_w * {{dst}}_stride_y + idx_out_h * {{dst}}_stride_z + idx_out_n * {{dst}}_stride_w;
VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)
res0 = {{INITIAL_VALUE}};
const int idx_in_w = idx_out_w * {{STRIDE_X}} - {{PAD_X}};
const int idx_in_h = idx_out_h * {{STRIDE_Y}} - {{PAD_Y}};
const int pool_x_s = max((int)0, -idx_in_w);
const int pool_x_e = min((int){{POOL_SIZE_X}}, (int){{SRC_WIDTH}} - idx_in_w);
const int pool_y_s = max((int)0, -idx_in_h);
const int pool_y_e = min((int){{POOL_SIZE_Y}}, (int){{SRC_HEIGHT}} - idx_in_h);
)_";
// Determine filter size depending on if padding is excluded or not
if (_attributes.exclude_padding())
{
code += R"_(
const int filter_size = (pool_y_e - pool_y_s) * (pool_x_e - pool_x_s);
)_";
}
else
{
code += R"_(
const int filter_size = {{POOL_SIZE_X}} * {{POOL_SIZE_Y}};
)_";
}
// Loop through pool size
// if global pooling
if (_attributes.pool_size().x() == _src->dimension(width_idx) &&
_attributes.pool_size().y() == _src->dimension(height_idx))
{
// Begin loop
code += R"_(
// Global pooling path
for(int y = 0; y < {{POOL_SIZE_Y}}; ++y)
{
#pragma unroll 8
for(int x = 0; x < {{POOL_SIZE_X}}; ++x)
{
VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)
data0;
)_";
}
else // if local pooling size
{
code += R"_(
for(int y = pool_y_s; y < pool_y_e; ++y)
{
#pragma unroll 8
for(int x = pool_x_s; x < pool_x_e; ++x)
{
VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)
data0;
)_";
} // end else
// if condition inside loop - use 32bit acc if mixed_precision.
// End loop through pooling section.
if (fp_mixed_precision)
{
// In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE
code += R"_(
data0 = CONVERT(VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + (x + idx_in_w) * {{src}}_stride_y + (y + idx_in_h) * {{src}}_stride_z)), VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0));
res0 = POOL_OP(res0, data0);
}
}
)_";
}
else // load data, compute result and end loop
{
code += R"_(
data0 = VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + (x + idx_in_w) * {{src}}_stride_y + (y + idx_in_h) * {{src}}_stride_z));
res0 = POOL_OP(res0, data0);
}
}
)_";
}
// For Pool AVG ONLY, divide pool output by filter size
if (pool_type == PoolingType::AVG)
{
code += R"_(
res0 /= (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0))filter_size;
)_";
}
// If mixed precision convert datatype before storing. Then end kernel.
if (fp_mixed_precision)
{
code += R"_(
VEC_DATA_TYPE({{DATA_TYPE}}, N0)
res_converted0 = CONVERT(res0, VEC_DATA_TYPE({{DATA_TYPE}}, N0));
STORE_VECTOR_SELECT(res_converted, {{DATA_TYPE}}, out_base_ptr, N0, PARTIAL_N0, (PARTIAL_N0 != 0) && g_ind_0 == 0);
)_";
}
else
{
// Store data
code += R"_(
STORE_VECTOR_SELECT(res, {{DATA_TYPE}}, out_base_ptr, N0, PARTIAL_N0, (PARTIAL_N0 != 0) && g_ind_0 == 0);
)_";
}
code += R"_(
//------------------ END KERNEL {{meta_kernel_id}} ---------------------
}
)_";
return code;
}
std::string ClTemplatePool2d::get_2x2_kernel_code() const
{
const auto pool_type = _attributes.pool_type();
const bool fp_mixed_precision = (_src->data_type() == DataType::F16) && pool_type != PoolingType::MAX;
std::string pool_op = (pool_type == PoolingType::AVG) ? R"_(#define POOL_OP(x,y) ((x) + (y)))_"
: R"_(#define POOL_OP(x,y) (fmax((x), (y))) )_";
std::string code = R"_(
//------------------ START KERNEL {{meta_kernel_id}} ---------------------
// IN_0(src) {{src}}
// OUT(dst, accum) {{dst}}
#define SELECT_TYPE SELECT_VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)
{
const int idx_out_c = g_ind_0;
const int idx_out_w = g_ind_1;
)_";
// Add pool op macro
code += "\n" + pool_op + "\n";
// If batch size != 1, the batch size dimension is collapsed over the height dimension
code += R"_(
const int idx_out_h = g_ind_2 % {{DST_HEIGHT}};
const int idx_out_n = g_ind_2 / {{DST_HEIGHT}};
)_";
code += R"_(
const int idx_in_w = idx_out_w * {{STRIDE_X}} - {{PAD_X}};
const int idx_in_h = idx_out_h * {{STRIDE_Y}} - {{PAD_Y}};
__global unsigned char *in_base_ptr = {{src}}_ptr + {{src}}_offset_first_element_in_bytes + idx_out_c * sizeof({{DATA_TYPE}}) + idx_out_n * {{src}}_stride_w;
__global unsigned char *out_base_ptr = {{dst}}_ptr + {{dst}}_offset_first_element_in_bytes + idx_out_c * sizeof({{DATA_TYPE}}) + idx_out_w * {{dst}}_stride_y + idx_out_h * {{dst}}_stride_z + idx_out_n *
{{dst}}_stride_w;
const int pool_x_s = max((int)0, -idx_in_w);
const int pool_x_e = min((int)2, (int){{SRC_WIDTH}} - idx_in_w);
const int pool_y_s = max((int)0, -idx_in_h);
const int pool_y_e = min((int)2, (int){{SRC_HEIGHT}} - idx_in_h);
const int filter_size = (pool_x_e - pool_x_s) * (pool_y_e - pool_y_s);
const int x0 = pool_x_s + idx_in_w;
const int y0 = pool_y_s + idx_in_h;
const int x1 = pool_x_e - 1 + idx_in_w;
const int y1 = pool_y_e - 1 + idx_in_h;
REPEAT_VAR_INIT_TO_CONST(4, VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0), data, 0);
)_";
if (fp_mixed_precision)
{
// In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE
code += R"_(
data0 = CONVERT(VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x0 * {{src}}_stride_y + y0 * {{src}}_stride_z)), VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0));
data1 = CONVERT(VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x1 * {{src}}_stride_y + y0 * {{src}}_stride_z)), VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0));
data2 = CONVERT(VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x0 * {{src}}_stride_y + y1 * {{src}}_stride_z)), VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0));
data3 = CONVERT(VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x1 * {{src}}_stride_y + y1 * {{src}}_stride_z)), VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0));
)_";
}
else
{
code += R"_(
data0 = VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x0 * {{src}}_stride_y + y0 * {{src}}_stride_z));
data1 = VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x1 * {{src}}_stride_y + y0 * {{src}}_stride_z));
data2 = VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x0 * {{src}}_stride_y + y1 * {{src}}_stride_z));
data3 = VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x1 * {{src}}_stride_y + y1 * {{src}}_stride_z));
)_";
}
if (pool_type != PoolingType::MAX)
{
// Make invalid the values loaded if the x or y coordinate was clamped (out-of-bound)
code += R"_(
if(filter_size != 4)
{
SELECT_TYPE cond_w_s = (SELECT_TYPE)idx_in_w < (SELECT_TYPE)0;
SELECT_TYPE cond_w_e = (SELECT_TYPE)idx_in_w >= (SELECT_TYPE)({{SRC_WIDTH}} - 1);
SELECT_TYPE cond_h_s = (SELECT_TYPE)idx_in_h < (SELECT_TYPE)0;
SELECT_TYPE cond_h_e = (SELECT_TYPE)idx_in_h >= (SELECT_TYPE)({{SRC_HEIGHT}} - 1);
data0 = select(data0, (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)){{INITIAL_VALUE}}, (SELECT_TYPE)(cond_w_s | cond_h_s));
data1 = select(data1, (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)){{INITIAL_VALUE}}, (SELECT_TYPE)(cond_w_e | cond_h_s));
data2 = select(data2, (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)){{INITIAL_VALUE}}, (SELECT_TYPE)(cond_w_s | cond_h_e));
data3 = select(data3, (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)){{INITIAL_VALUE}}, (SELECT_TYPE)(cond_w_e | cond_h_e));
}
)_";
}
code += R"_(
VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)
res0 = data0;
res0 = POOL_OP(res0, data1);
res0 = POOL_OP(res0, data2);
res0 = POOL_OP(res0, data3);
)_";
if (pool_type == PoolingType::AVG)
{
// If avg pooling divide result accordingly.
if (_attributes.exclude_padding())
{
code += R"_(
res0 /= (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0))filter_size;
)_";
}
else
{
code += R"_(
res0 /= (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0))4;
)_";
}
}
// Store result
if (fp_mixed_precision)
{
code += R"_(
VEC_DATA_TYPE({{DATA_TYPE}}, N0)
res_converted0 = CONVERT(res0, VEC_DATA_TYPE({{DATA_TYPE}}, N0));
STORE_VECTOR_SELECT(res_converted, {{DATA_TYPE}}, out_base_ptr, N0, PARTIAL_N0, (PARTIAL_N0 != 0) && g_ind_0 == 0);
)_";
}
else
{
code += R"_(
STORE_VECTOR_SELECT(res, {{DATA_TYPE}}, out_base_ptr, N0, PARTIAL_N0, (PARTIAL_N0 != 0) && g_ind_0 == 0);
)_";
}
code += R"_(
//------------------ END KERNEL {{meta_kernel_id}} ---------------------
}
#undef SELECT_TYPE
)_";
return code;
}
void ClTemplatePool2d::declare_variables(GpuKernelVariableTable &vtable, const ComponentGroup &comp_group) const
{
vtable.declare_variable(comp_group, _src, GpuKernelArgumentInfo(GpuKernelArgumentInfo::Type::Tensor_4D_t_Buffer),
"src");
vtable.declare_variable(comp_group, _dst, GpuKernelArgumentInfo(GpuKernelArgumentInfo::Type::Tensor_4D_t_Buffer),
"dst");
}
TagLUT ClTemplatePool2d::get_tag_lut(const GpuKernelVariableTable &vtable, const ComponentGroup &comp_group) const
{
ARM_COMPUTE_UNUSED(comp_group);
TagLUT lut{};
// Arguments and global shared variables
lut["src"] = vtable.get_variable(_src);
lut["dst"] = vtable.get_variable(_dst);
// Local build options
lut["meta_kernel_id"] = id();
// Retrieve relevant data
const auto padding = _attributes.pad();
const auto stride = _attributes.stride();
const auto pool_size = _attributes.pool_size();
const auto data_type = _src->data_type();
const auto use_fp_mixed_precision =
(_src->data_type() == DataType::F16) && _attributes.pool_type() != PoolingType::MAX;
const std::string max_initial_value =
_settings.use_inf_as_limit() ? "(-INFINITY)"
: float_to_string_with_full_precision(std::numeric_limits<float>::lowest());
// pool specific
lut["STRIDE_X"] = stride.x();
lut["STRIDE_Y"] = stride.y();
lut["PAD_X"] = padding.left;
lut["PAD_Y"] = padding.top;
lut["POOL_SIZE_X"] = pool_size.width;
lut["POOL_SIZE_Y"] = pool_size.height;
// Datatypes and variables
lut["ACC_DATA_TYPE"] = get_cl_type_from_data_type(
(use_fp_mixed_precision) ? (DataType::F32) : (data_type)); // Type of accumulators to use.
lut["DATA_TYPE"] = get_cl_type_from_data_type(data_type);
lut["SRC_WIDTH"] = _src->dimension(width_idx);
lut["SRC_HEIGHT"] = _src->dimension(height_idx);
lut["INITIAL_VALUE"] = (_attributes.pool_type() == PoolingType::MAX) ? max_initial_value : std::string("0");
// Tensor specific data
lut["DST_HEIGHT"] = _dst->dimension(height_idx);
return lut;
}
CLBuildOptions ClTemplatePool2d::get_build_options(const ComponentGroup &comp_group) const
{
const auto root_window = comp_group.get_root_component()->template_writer()->get_window();
const unsigned int n0 = root_window.x().step();
const unsigned int partial_store_n0 = _dst->dimension(0) % n0;
CLBuildOptions build_opts{};
build_opts.add_option("-DN0=" + support::cpp11::to_string(n0));
build_opts.add_option("-DPARTIAL_N0=" + support::cpp11::to_string(partial_store_n0));
return build_opts;
}
std::string ClTemplatePool2d::get_config_id() const
{
const DataType data_type = _src->data_type();
const DataLayout data_layout = _src->data_layout();
std::string config_id{};
config_id += "pooling_layer_2d_";
config_id += lower_string(string_from_data_type(data_type));
config_id += "_";
config_id += lower_string(string_from_data_layout(data_layout));
config_id += "_";
config_id += support::cpp11::to_string(_dst->dimension(width_idx));
config_id += "_";
config_id += support::cpp11::to_string(_dst->dimension(height_idx));
config_id += "_";
config_id += support::cpp11::to_string(_dst->dimension(channel_idx));
return config_id;
}
std::set<std::string> ClTemplatePool2d::get_headers_list() const
{
return std::set<std::string>{"helpers.h", "tile_helpers.h", "repeat.h"};
}
Window ClTemplatePool2d::get_window() const
{
ARM_COMPUTE_ERROR_ON_MSG(_dst->tensor_shape().total_size() == 0U, "Destination tensor is not initialized");
const auto output_shape = _dst->tensor_shape();
const unsigned int vec_size = adjust_vec_size(((_dst->data_type() == DataType::F32) ? 2 : 4), _dst->dimension(0));
// Create and configure kernel window
auto win = calculate_max_window(output_shape, Steps(vec_size));
win = win.collapse_if_possible(win, Window::DimZ); // collapse window on batch size.
return win;
}
} // namespace dynamic_fusion
} // namespace experimental
} // namespace arm_compute