blob: 6fd7e52d5d2516307760e5536bdde4005e7aa955 [file] [log] [blame]
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/gpu/cl/operators/ClGemmLowpMatrixMultiplyCore.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/KernelDescriptors.h"
#include "arm_compute/core/Log.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/MemoryHelpers.h"
#include "src/gpu/cl/kernels/ClCastKernel.h"
#include "src/gpu/cl/kernels/ClGemmLowpMatrixMultiplyNativeKernel.h"
#include "src/gpu/cl/kernels/ClGemmLowpMatrixMultiplyReshapedOnlyRhsKernel.h"
#include "src/gpu/cl/kernels/ClGemmLowpOffsetContributionKernel.h"
#include "src/gpu/cl/kernels/ClGemmLowpOffsetContributionOutputStageKernel.h"
#include "src/gpu/cl/kernels/ClGemmLowpReductionKernel.h"
#include "src/gpu/cl/kernels/ClGemmReshapeRhsMatrixKernel.h"
#include "src/gpu/cl/utils/ClAuxTensorHandler.h"
#include "src/runtime/CL/gemm_auto_heuristics/CLGEMMAutoHeuristics.h"
#include "src/common/utils/Log.h"
#include "utils/TypePrinter.h"
namespace arm_compute
{
namespace opencl
{
using namespace arm_compute::misc::shape_calculator;
using namespace arm_compute::cl_gemm;
using namespace arm_compute::opencl::kernels;
using namespace arm_compute::experimental;
namespace
{
inline bool validate_gemm_kernel(CLGEMMKernelType kernel_type)
{
switch(kernel_type)
{
case CLGEMMKernelType::NATIVE:
case CLGEMMKernelType::RESHAPED_ONLY_RHS:
{
return true;
}
default:
{
return false;
}
}
}
//Automatically select between mlgo (prioritized) and default heuristics for gemm kernel type
inline CLGEMMKernelType auto_select_gemm_kernel(auto_heuristics::CommonQuery query, bool reshape_b_only_on_first_run)
{
auto gemm_kernel = auto_heuristics::select_mlgo_gemm_kernel(query, reshape_b_only_on_first_run);
if(bool(gemm_kernel))
{
if(validate_gemm_kernel(gemm_kernel.gemm_type))
{
ARM_COMPUTE_LOG_INFO_MSG_WITH_FORMAT_CORE("Use gemm kernel from mlgo heuristics: %s.", to_string(gemm_kernel.gemm_type).c_str());
return gemm_kernel.gemm_type;
}
}
gemm_kernel = auto_heuristics::select_default_gemm_kernel(query, reshape_b_only_on_first_run);
ARM_COMPUTE_LOG_INFO_MSG_WITH_FORMAT_CORE("Use gemm kernel from default heuristics: %s.", to_string(gemm_kernel.gemm_type).c_str());
return gemm_kernel.gemm_type;
}
// Validate lhs_info and rhs_info for native kernel
inline bool validate_lhs_rhs_info_native(const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info, const ITensorInfo *a, const ITensorInfo *b, const GEMMReshapeInfo &reshape_info)
{
// Validate GEMMLHSMatrixInfo and GEMMRHSMatrixInfo for reshaped only rhs kernel
TensorInfo mm_result_s32_info{};
// Output tensor auto initialization if not yet initialized
auto_init_if_empty(mm_result_s32_info, a->clone()->set_tensor_shape(compute_mm_shape(*a, *b, false, reshape_info)).set_data_type(DataType::S32));
// Validate mm kernel
// NOTE: Ignore all other parameters (eg. output stage etc.) and only validate lhs and rhs info
// NOTE: This assumes:
// 1. lhs and rhs info's validity does not depend on these other parameters and vice versa(in CLGEMMLowpMatrixMultiplyNativeKernel.cpp validate_arguments).
// 2. lhs and rhs info does not cause window and padding issues through side effects (in CLGEMMLowpMatrixMultiplyNativeKernel.cpp validate_and_configure_window).
if(!bool(ClGemmLowpMatrixMultiplyNativeKernel::validate(a, b, &mm_result_s32_info, lhs_info, rhs_info, reshape_info)))
{
return false;
}
return true;
}
// Automatically select between mlgo (prioritized) and default heuristics for native kernel configs
std::pair<GEMMLHSMatrixInfo, GEMMRHSMatrixInfo> auto_select_gemm_config_native(auto_heuristics::CommonQuery query, const ITensorInfo *a, const ITensorInfo *b, const GEMMReshapeInfo &reshape_info)
{
auto config = auto_heuristics::select_mlgo_gemm_config_native(query);
if(config)
{
if(validate_lhs_rhs_info_native(config.lhs_info, config.rhs_info, a, b, reshape_info))
{
ARM_COMPUTE_LOG_INFO_MSG_WITH_FORMAT_CORE("Use native config from mlgo heuristics: LHS info: %s ; RHS info: %s ", to_string(config.lhs_info).c_str(), to_string(config.rhs_info).c_str());
return { config.lhs_info, config.rhs_info };
}
}
config = auto_heuristics::select_default_gemm_config_native(query);
ARM_COMPUTE_LOG_INFO_MSG_WITH_FORMAT_CORE("Use native config from default heuristics: LHS info: %s ; RHS info: %s ", to_string(config.lhs_info).c_str(), to_string(config.rhs_info).c_str());
return { config.lhs_info, config.rhs_info };
}
// Validate lhs_info and rhs_info for reshaped only rhs kernel
inline bool validate_lhs_rhs_info_reshaped_only_rhs(const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info, const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *output,
unsigned int m, unsigned int n, unsigned int k, bool reinterpret_input_as_3d, int depth_output_gemm3d)
{
// Validate GEMMLHSMatrixInfo and GEMMRHSMatrixInfo for reshaped only rhs kernel
TensorInfo tmp_b_info{};
// Validate reshape RHS kernel
auto_init_if_empty(tmp_b_info, b->clone()->set_tensor_shape(compute_rhs_reshaped_shape(*b, rhs_info)));
if(!bool(ClGemmReshapeRhsMatrixKernel::validate(b, &tmp_b_info, rhs_info)))
{
return false;
}
// Validate mm kernel
// NOTE: Ignore all other parameters (eg. depth_output_gemm3d, output stage etc.) and only validate lhs and rhs info
// NOTE: This assumes:
// 1. lhs and rhs info's validity does not depend on these other parameters and vice versa(in ClGemmLowpMatrixMultiplyReshapedOnlyRHSKernel.cpp validate_arguments).
// 2. lhs and rhs info does not cause window and padding issues through side effects (in ClGemmLowpMatrixMultiplyReshapedOnlyRHSKernel.cpp validate_and_configure_window).
GEMMKernelInfo gemm_kernel_info;
gemm_kernel_info.m = m;
gemm_kernel_info.n = n;
gemm_kernel_info.k = k;
gemm_kernel_info.reinterpret_input_as_3d = reinterpret_input_as_3d;
gemm_kernel_info.depth_output_gemm3d = depth_output_gemm3d;
gemm_kernel_info.lhs_info = lhs_info;
gemm_kernel_info.rhs_info = rhs_info;
// Since we ignore the output stage, output data type has to be S32 to pass the validation
TensorInfo output_info_copy(*output);
output_info_copy.set_data_type(DataType::S32);
if(!bool(ClGemmLowpMatrixMultiplyReshapedOnlyRhsKernel::validate(a, &tmp_b_info, &output_info_copy, gemm_kernel_info)))
{
return false;
}
return true;
}
// Automatically select between mlgo (prioritized) and default heuristics for reshaped only rhs kernel configs
std::pair<GEMMLHSMatrixInfo, GEMMRHSMatrixInfo> auto_select_gemm_config_reshaped_only_rhs(auto_heuristics::CommonQuery query, bool reinterpret_input_as_3d, int depth_output_gemm3d,
const ITensorInfo *a,
const ITensorInfo *b, const ITensorInfo *output)
{
auto config = auto_heuristics::select_mlgo_gemm_config_reshaped_only_rhs(query);
if(config)
{
if(validate_lhs_rhs_info_reshaped_only_rhs(config.lhs_info, config.rhs_info, a, b, output, query.m, query.n, query.k, reinterpret_input_as_3d, depth_output_gemm3d))
{
ARM_COMPUTE_LOG_INFO_MSG_WITH_FORMAT_CORE("Use reshaped_only_rhs config from mlgo heuristics: LHS info: %s ; RHS info: %s ", to_string(config.lhs_info).c_str(), to_string(config.rhs_info).c_str());
return { config.lhs_info, config.rhs_info };
}
}
config = auto_heuristics::select_default_gemm_config_reshaped_only_rhs(query);
ARM_COMPUTE_LOG_INFO_MSG_WITH_FORMAT_CORE("Use reshaped_only_rhs config from default heuristics: LHS info: %s ; RHS info: %s ", to_string(config.lhs_info).c_str(), to_string(config.rhs_info).c_str());
return { config.lhs_info, config.rhs_info };
}
inline bool is_gemm_reshaped(CLGEMMKernelType kernel_type)
{
switch(kernel_type)
{
case CLGEMMKernelType::NATIVE:
return false;
case CLGEMMKernelType::RESHAPED_ONLY_RHS:
return true;
default:
ARM_COMPUTE_ERROR("Not supported gemmlowp kernel!");
}
}
} // namespace
ClGemmLowpMatrixMultiplyCore::ClGemmLowpMatrixMultiplyCore()
: _weights_to_qasymm8(std::make_unique<ClCastKernel>()),
_mm_native_kernel(std::make_unique<ClGemmLowpMatrixMultiplyNativeKernel>()),
_mm_reshaped_only_rhs_kernel(std::make_unique<ClGemmLowpMatrixMultiplyReshapedOnlyRhsKernel>()),
_mtx_b_reshape_kernel(std::make_unique<ClGemmReshapeRhsMatrixKernel>()),
_mtx_a_reduction_kernel(std::make_unique<ClGemmLowpMatrixAReductionKernel>()),
_mtx_b_reduction_kernel(std::make_unique<ClGemmLowpMatrixBReductionKernel>()),
_offset_contribution_kernel(std::make_unique<ClGemmLowpOffsetContributionKernel>()),
_offset_contribution_output_stage_kernel(std::make_unique<ClGemmLowpOffsetContributionOutputStageKernel>()),
_aux_mem(AuxTensorIdx::Count)
{
}
ClGemmLowpMatrixMultiplyCore::~ClGemmLowpMatrixMultiplyCore() = default;
void ClGemmLowpMatrixMultiplyCore::configure(const CLCompileContext &compile_context,
ITensorInfo *a, ITensorInfo *b, ITensorInfo *c, ITensorInfo *output,
const GEMMInfo &gemm_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, output);
ARM_COMPUTE_ERROR_THROW_ON(ClGemmLowpMatrixMultiplyCore::validate(a, b, c != nullptr ? c : nullptr, output, gemm_info));
ARM_COMPUTE_LOG_PARAMS(a, b, c, output, gemm_info);
_reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run();
_a_offset = a->quantization_info().uniform().offset;
_convert_to_qasymm8 = is_data_type_quantized_per_channel(b->data_type()) && is_data_type_quantized_symmetric(b->data_type())
&& a->data_type() == DataType::QASYMM8;
_b_offset = _convert_to_qasymm8 ? -128 : b->quantization_info().uniform().offset;
_gemm_info = gemm_info;
// Get the GPU target
const GPUTarget gpu_target = CLScheduler::get().target();
// Set the target for the kernels
_mm_native_kernel->set_target(gpu_target);
_mm_reshaped_only_rhs_kernel->set_target(gpu_target);
GEMMRHSMatrixInfo rhs_info;
GEMMLHSMatrixInfo lhs_info;
// Arguments used by GEMMReshapeInfo
// If we pass the matrix A and matrix B reshaped to CLGEMMMatrixMultiplyKernel, we need to pass m, n, k, mult_transpose1xW_width and mult_interleave4x4_height to CLGEMMReshapeInfo
// in order to know how the matrices have been reshaped
bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d();
const unsigned int m = reinterpret_input_as_3d ? (a->dimension(1) * a->dimension(2)) : a->dimension(1);
const unsigned int n = b->dimension(0);
const unsigned int k = a->dimension(0);
const unsigned int batch_size = reinterpret_input_as_3d ? a->dimension(3) : a->dimension(2);
const int depth_output_gemm3d = gemm_info.depth_output_gemm3d();
const auto reshape_info = GEMMReshapeInfo(m, n, k, 1, 1, depth_output_gemm3d, reinterpret_input_as_3d);
// Check if we need to reshape the matrix A and matrix B
_is_gemm_reshaped = is_gemm_reshaped(auto_select_gemm_kernel(auto_heuristics::CommonQuery{ gpu_target, a->data_type(), m, n, k, batch_size }, _reshape_b_only_on_first_run));
if(_convert_to_qasymm8)
{
// Set data type for converted weights
_qasymm8_weights = *b;
_qasymm8_weights.set_data_type(DataType::QASYMM8);
_weights_to_qasymm8->configure(compile_context, b, &_qasymm8_weights, ConvertPolicy::WRAP);
}
ITensorInfo *matrix_b = _convert_to_qasymm8 ? &_qasymm8_weights : b;
if(_is_gemm_reshaped)
{
matrix_b = &_tmp_b;
// Pick up the GEMM configuration
// It doesn't matter whether Datatype is DataType::QASYMM8 or DataType::QASYMM8_SIGNED, since it only affect the shape configuration
std::tie(lhs_info, rhs_info) = auto_select_gemm_config_reshaped_only_rhs(auto_heuristics::CommonQuery{ gpu_target, DataType::QASYMM8, m, n, k, batch_size }, reinterpret_input_as_3d,
depth_output_gemm3d,
a, _convert_to_qasymm8 ? &_qasymm8_weights : b, output);
// Configure reshape RHS kernel
_mtx_b_reshape_kernel->configure(compile_context, _convert_to_qasymm8 ? &_qasymm8_weights : b, &_tmp_b, rhs_info);
}
// Using default reduction info
const GEMMLowpReductionKernelInfo reduction_info {};
// Initialize matrix B reduction kernel only if _a_offset is not equal to 0
if(_a_offset != 0)
{
_vector_sum_col = TensorInfo(compute_reductionA_shape(*b), 1, DataType::S32);
// Configure Matrix B reduction kernel
_mtx_b_reduction_kernel->configure(compile_context, _convert_to_qasymm8 ? &_qasymm8_weights : b, &_vector_sum_col, reduction_info);
}
// Initialize Matrix A reduction kernel only if _b_offset is not equal to 0
if(_b_offset != 0)
{
_vector_sum_row = TensorInfo(compute_reductionB_shape(*a), 1, DataType::S32);
// Configure matrix A reduction kernel
_mtx_a_reduction_kernel->configure(compile_context, a, &_vector_sum_row, reduction_info);
}
GEMMKernelInfo gemm_kernel_info;
gemm_kernel_info.m = m;
gemm_kernel_info.n = n;
gemm_kernel_info.k = k;
gemm_kernel_info.depth_output_gemm3d = depth_output_gemm3d;
gemm_kernel_info.reinterpret_input_as_3d = reinterpret_input_as_3d;
gemm_kernel_info.lhs_info = lhs_info;
gemm_kernel_info.rhs_info = rhs_info;
gemm_kernel_info.a_offset = _a_offset;
gemm_kernel_info.b_offset = _b_offset;
// If GEMMLowpOutputStage != NONE, fuse the offset contribution with the output stage
if(gemm_info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE)
{
// Configure offset contribution kernel
const size_t num_filters = (gemm_info.gemmlowp_output_stage().is_quantized_per_channel) ? gemm_info.gemmlowp_output_stage().gemmlowp_multipliers.size() : 1;
_gemm_output_stage_multipliers = TensorInfo(TensorShape(num_filters), 1, DataType::S32);
_gemm_output_stage_shifts = TensorInfo(TensorShape(num_filters), 1, DataType::S32);
GEMMLowpOutputStageInfo gemmlowp_output_stage = gemm_info.gemmlowp_output_stage();
gemmlowp_output_stage.output_data_type = a->data_type();
if(num_filters == 1)
{
// Per-channel quantization with OFM == 1 is equivalent to uniform quantization.
// Setting this flag to false prevents the kernel from adding useless padding to the output multipliers and shifts
gemmlowp_output_stage.is_quantized_per_channel = false;
}
gemm_kernel_info.output_stage = gemmlowp_output_stage;
if(_is_gemm_reshaped && gemmlowp_output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
{
// Configure and tune matrix multiply kernel with fused output stage
_mm_reshaped_only_rhs_kernel->configure(compile_context, a, matrix_b, output, gemm_kernel_info, _a_offset == 0 ? nullptr : &_vector_sum_col,
_b_offset == 0 ? nullptr : &_vector_sum_row, c != nullptr ? c : nullptr, &_gemm_output_stage_multipliers, &_gemm_output_stage_shifts);
}
else
{
_run_output_stage = true;
if(_is_gemm_reshaped)
{
_mm_reshaped_only_rhs_kernel->configure(compile_context, a, matrix_b, &_mm_result_s32, gemm_kernel_info);
}
else
{
// Pick up the GEMM configuration
// It doesn't matter whether Datatype is DataType::QASYMM8 or DataType::QASYMM8_SIGNED, since it only affect the shape configuration
std::tie(lhs_info, rhs_info) = auto_select_gemm_config_native(auto_heuristics::CommonQuery{ gpu_target, DataType::QASYMM8, m, n, k, batch_size },
a, _convert_to_qasymm8 ? &_qasymm8_weights : matrix_b, reshape_info);
// Configure matrix multiply kernel
_mm_native_kernel->configure(compile_context, a, matrix_b, &_mm_result_s32, lhs_info, rhs_info, reshape_info);
_offset_contribution_output_stage_kernel->configure(compile_context, &_mm_result_s32, _a_offset == 0 ? nullptr : &_vector_sum_col, _b_offset == 0 ? nullptr : &_vector_sum_row,
c != nullptr ? c : nullptr, output, a->dimension(0), _a_offset, _b_offset, gemmlowp_output_stage,
&_gemm_output_stage_multipliers, &_gemm_output_stage_shifts);
}
}
}
else
{
_run_offset_contribution = true;
if(_is_gemm_reshaped)
{
// Configure and tune matrix multiply kernel
_mm_reshaped_only_rhs_kernel->configure(compile_context, a, matrix_b, output, gemm_kernel_info);
}
else
{
// Pick up the GEMM configuration
// It doesn't matter whether Datatype is DataType::QASYMM8 or DataType::QASYMM8_SIGNED, since it only affect the shape configuration
std::tie(lhs_info, rhs_info) = auto_select_gemm_config_native(auto_heuristics::CommonQuery{ gpu_target, DataType::QASYMM8, m, n, k, batch_size },
a, _convert_to_qasymm8 ? &_qasymm8_weights : b, reshape_info);
// Configure matrix multiply kernel
_mm_native_kernel->configure(compile_context, a, matrix_b, output, lhs_info, rhs_info, reshape_info);
}
// Configure offset contribution kernel
_offset_contribution_kernel->configure(compile_context, output, _a_offset == 0 ? nullptr : &_vector_sum_col, _b_offset == 0 ? nullptr : &_vector_sum_row,
c != nullptr ? c : nullptr, a->dimension(0), _a_offset, _b_offset);
}
// Request memory
_aux_mem[RhsQAsymm8] = MemoryInfo(offset_int_vec(RhsQAsymm8), _reshape_b_only_on_first_run ? MemoryLifetime::Persistent : MemoryLifetime::Temporary, _qasymm8_weights.total_size());
if(_is_gemm_reshaped)
{
// Overwrite Rhs as prepare if gemm is reshaped as there will be a two-step transformation
_aux_mem[RhsQAsymm8] = MemoryInfo(offset_int_vec(RhsQAsymm8), _reshape_b_only_on_first_run ? MemoryLifetime::Prepare : MemoryLifetime::Temporary, _qasymm8_weights.total_size());
_aux_mem[RhsReshape] = MemoryInfo(offset_int_vec(RhsReshape), _reshape_b_only_on_first_run ? MemoryLifetime::Persistent : MemoryLifetime::Temporary, _tmp_b.total_size());
}
if(_a_offset != 0)
{
_aux_mem[VecSumCol] = MemoryInfo(offset_int_vec(VecSumCol), _reshape_b_only_on_first_run ? MemoryLifetime::Persistent : MemoryLifetime::Temporary, _vector_sum_col.total_size());
}
if(_b_offset != 0)
{
_aux_mem[VecSumRow] = MemoryInfo(offset_int_vec(VecSumRow), MemoryLifetime::Temporary, _vector_sum_row.total_size());
}
_aux_mem[ResultS32] = MemoryInfo(offset_int_vec(ResultS32), MemoryLifetime::Temporary, _mm_result_s32.total_size());
_aux_mem[Multipliers] = MemoryInfo(offset_int_vec(Multipliers), MemoryLifetime::Persistent, _gemm_output_stage_multipliers.total_size());
_aux_mem[Shifts] = MemoryInfo(offset_int_vec(Shifts), MemoryLifetime::Persistent, _gemm_output_stage_shifts.total_size());
}
Status ClGemmLowpMatrixMultiplyCore::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *output, const GEMMInfo &gemm_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(b, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8, DataType::QSYMM8_PER_CHANNEL);
ARM_COMPUTE_RETURN_ERROR_ON(a->data_type() == DataType::QASYMM8 && b->data_type() == DataType::QASYMM8_SIGNED);
ARM_COMPUTE_RETURN_ERROR_ON(a->data_type() == DataType::QASYMM8_SIGNED && b->data_type() == DataType::QASYMM8);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported");
int32_t a_offset = a->quantization_info().uniform().offset;
int32_t b_offset = b->quantization_info().uniform().offset;
const ITensorInfo *matrix_a_info = a;
TensorInfo tmp_b_info{};
GEMMRHSMatrixInfo rhs_info;
GEMMLHSMatrixInfo lhs_info;
// Get the GPU target
const GPUTarget gpu_target = CLScheduler::get().target();
bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d();
const unsigned int m = reinterpret_input_as_3d ? (a->dimension(1) * a->dimension(2)) : a->dimension(1);
const unsigned int n = b->dimension(0);
const unsigned int k = a->dimension(0);
const unsigned int batch_size = reinterpret_input_as_3d ? a->dimension(3) : a->dimension(2);
const int depth_output_gemm3d = gemm_info.depth_output_gemm3d();
bool reshape_matrix_b = is_gemm_reshaped(auto_select_gemm_kernel(auto_heuristics::CommonQuery{ gpu_target, a->data_type(), m, n, k, batch_size }, gemm_info.reshape_b_only_on_first_run()));
const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(m, n, k, 1, 1, depth_output_gemm3d, reinterpret_input_as_3d);
bool convert_to_qasymm8 = is_data_type_quantized_per_channel(b->data_type()) && is_data_type_quantized_symmetric(b->data_type())
&& is_data_type_quantized_asymmetric(a->data_type());
TensorInfo weights_info(*b);
if(convert_to_qasymm8)
{
b_offset = -128;
weights_info.set_data_type(DataType::QASYMM8);
ARM_COMPUTE_RETURN_ON_ERROR(ClCastKernel::validate(b, &weights_info, ConvertPolicy::WRAP));
}
const ITensorInfo *matrix_b_info = &weights_info;
if(reshape_matrix_b)
{
matrix_b_info = &tmp_b_info;
// Pick up the GEMM configuration
// NOTE: No need to validate mlgo configurations as they automatically fall back to default heuristics if validation fails
// It doesn't matter whether Datatype is DataType::QASYMM8 or DataType::QASYMM8_SIGNED, since it only affect the shape configuration
const auto res = select_default_gemm_config_reshaped_only_rhs(auto_heuristics::CommonQuery{ gpu_target, DataType::QASYMM8, m, n, k, batch_size });
lhs_info = res.lhs_info;
rhs_info = res.rhs_info;
// Validate reshape RHS kernel
auto_init_if_empty(tmp_b_info, weights_info.clone()->set_tensor_shape(compute_rhs_reshaped_shape(weights_info, rhs_info)));
ARM_COMPUTE_RETURN_ON_ERROR(ClGemmReshapeRhsMatrixKernel::validate(&weights_info, &tmp_b_info, rhs_info));
}
TensorInfo info_vector_sum_col{};
TensorInfo info_vector_sum_row{};
const GEMMLowpReductionKernelInfo reduction_info;
// Validate matrix B reduction kernel only if _a_offset is not equal to 0
if(a_offset != 0)
{
info_vector_sum_col = TensorInfo(compute_reductionA_shape(weights_info), 1, DataType::S32);
// Configure Matrix B reduction kernel
ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpMatrixBReductionKernel::validate(&weights_info, &info_vector_sum_col, reduction_info));
}
// Validate Matrix A reduction kernel only if _b_offset is not equal to 0
if(b_offset != 0)
{
info_vector_sum_row = TensorInfo(compute_reductionB_shape(*a), 1, DataType::S32);
// Configure matrix A reduction kernel
ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpMatrixAReductionKernel::validate(a, &info_vector_sum_row, reduction_info));
}
GEMMKernelInfo gemm_kernel_info;
gemm_kernel_info.m = m;
gemm_kernel_info.n = n;
gemm_kernel_info.k = k;
gemm_kernel_info.depth_output_gemm3d = depth_output_gemm3d;
gemm_kernel_info.reinterpret_input_as_3d = reinterpret_input_as_3d;
gemm_kernel_info.lhs_info = lhs_info;
gemm_kernel_info.rhs_info = rhs_info;
gemm_kernel_info.a_offset = a_offset;
gemm_kernel_info.b_offset = b_offset;
if(gemm_info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE)
{
const size_t num_filters = (gemm_info.gemmlowp_output_stage().is_quantized_per_channel) ? gemm_info.gemmlowp_output_stage().gemmlowp_multipliers.size() : 1;
const TensorInfo gemm_output_stage_multipliers_shifts_info(TensorInfo(TensorShape(num_filters), 1, DataType::S32));
GEMMLowpOutputStageInfo gemmlowp_output_stage = gemm_info.gemmlowp_output_stage();
gemmlowp_output_stage.output_data_type = a->data_type();
gemm_kernel_info.output_stage = gemmlowp_output_stage;
if(reshape_matrix_b && gemm_info.gemmlowp_output_stage().type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
{
ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpMatrixMultiplyReshapedOnlyRhsKernel::validate(matrix_a_info, matrix_b_info, output, gemm_kernel_info,
a_offset == 0 ? nullptr : &info_vector_sum_col,
b_offset == 0 ? nullptr : &info_vector_sum_row,
c,
&gemm_output_stage_multipliers_shifts_info,
&gemm_output_stage_multipliers_shifts_info));
}
else
{
TensorInfo mm_result_s32_info{};
if(reshape_matrix_b)
{
// Output tensor auto inizialitation if not yet initialized
auto_init_if_empty(mm_result_s32_info, a->clone()->set_tensor_shape(compute_mm_shape(*matrix_a_info, *matrix_b_info, reshape_info)).set_data_type(DataType::S32));
// Validate matrix multiply
ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpMatrixMultiplyReshapedOnlyRhsKernel::validate(matrix_a_info, matrix_b_info, &mm_result_s32_info, gemm_kernel_info));
}
else
{
// Output tensor auto inizialitation if not yet initialized
auto_init_if_empty(mm_result_s32_info, a->clone()->set_tensor_shape(compute_mm_shape(*matrix_a_info, *matrix_b_info, false, reshape_info)).set_data_type(DataType::S32));
// Pick up the GEMM configuration
// NOTE: No need to validate mlgo configurations as they automatically fall back to default heuristics if validation fails
// It doesn't matter whether Datatype is DataType::QASYMM8 or DataType::QASYMM8_SIGNED, since it only affect the shape configuration
const auto res = select_default_gemm_config_native(auto_heuristics::CommonQuery{ gpu_target, DataType::QASYMM8, m, n, k, batch_size });
lhs_info = res.lhs_info;
rhs_info = res.rhs_info;
// Validate matrix multiply
ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpMatrixMultiplyNativeKernel::validate(matrix_a_info, matrix_b_info, &mm_result_s32_info, lhs_info, rhs_info, reshape_info));
}
// Validate offset contribution kernel
ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpOffsetContributionOutputStageKernel::validate(&mm_result_s32_info,
a_offset == 0 ? nullptr : &info_vector_sum_col,
b_offset == 0 ? nullptr : &info_vector_sum_row,
c,
output,
a_offset, b_offset,
gemmlowp_output_stage,
&gemm_output_stage_multipliers_shifts_info,
&gemm_output_stage_multipliers_shifts_info));
}
}
else
{
if(reshape_matrix_b)
{
// Validate matrix multiply
ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpMatrixMultiplyReshapedOnlyRhsKernel::validate(matrix_a_info, matrix_b_info, output, gemm_kernel_info));
}
else
{
// Pick up the GEMM configuration
// It doesn't matter whether Datatype is DataType::QASYMM8 or DataType::QASYMM8_SIGNED, since it only affect the shape configuration
const auto res = select_default_gemm_config_native(auto_heuristics::CommonQuery{ gpu_target, DataType::QASYMM8, m, n, k, batch_size });
lhs_info = res.lhs_info;
rhs_info = res.rhs_info;
// Validate matrix multiply
ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpMatrixMultiplyNativeKernel::validate(matrix_a_info, matrix_b_info, output, lhs_info, rhs_info, reshape_info));
}
if(output->total_size() != 0)
{
// Validate offset contribution kernel
ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpOffsetContributionKernel::validate(output,
a_offset == 0 ? nullptr : &info_vector_sum_col,
b_offset == 0 ? nullptr : &info_vector_sum_row,
c,
a_offset, b_offset));
}
}
return Status{};
}
void ClGemmLowpMatrixMultiplyCore::run(ITensorPack &tensors)
{
const ITensor *a = tensors.get_const_tensor(ACL_SRC_0);
const ITensor *b = tensors.get_const_tensor(ACL_SRC_1);
const ITensor *c = tensors.get_const_tensor(ACL_SRC_2);
ITensor *dst = tensors.get_tensor(ACL_DST);
ARM_COMPUTE_ERROR_ON_NULLPTR(a, dst);
CLAuxTensorHandler vec_sum_col(offset_int_vec(VecSumCol), _vector_sum_col, tensors, true);
CLAuxTensorHandler vec_sum_row(offset_int_vec(VecSumRow), _vector_sum_row, tensors, true);
CLAuxTensorHandler rhs_qasymm8(offset_int_vec(RhsQAsymm8), _qasymm8_weights, tensors, true);
CLAuxTensorHandler tmp_b(offset_int_vec(RhsReshape), _tmp_b, tensors, true);
CLAuxTensorHandler res32(offset_int_vec(ResultS32), _mm_result_s32, tensors, true);
CLAuxTensorHandler shifts(offset_int_vec(Shifts), _gemm_output_stage_shifts, tensors, true);
CLAuxTensorHandler multipliers(offset_int_vec(Multipliers), _gemm_output_stage_multipliers, tensors, true);
// Prepare the consts if needed
prepare(tensors);
const ITensor *matrix_a = a;
const ITensor *matrix_b = _convert_to_qasymm8 ? rhs_qasymm8.get() : b;
if(_is_gemm_reshaped)
{
matrix_b = tmp_b.get();
if(!_reshape_b_only_on_first_run)
{
// Run reshape matrix B
ITensorPack mtx_b_reshape_pack =
{
{ TensorType::ACL_SRC, _convert_to_qasymm8 ? rhs_qasymm8.get() : b },
{ TensorType::ACL_DST, tmp_b.get() }
};
CLScheduler::get().enqueue_op(*_mtx_b_reshape_kernel, mtx_b_reshape_pack, false);
}
}
// Run matrix B reduction kernel only if _a_offset is not equal to 0
if(_a_offset != 0 && !_reshape_b_only_on_first_run)
{
ITensorPack mtx_b_red_pack =
{
{ TensorType::ACL_SRC, _convert_to_qasymm8 ? rhs_qasymm8.get() : b },
{ TensorType::ACL_DST, vec_sum_col.get() }
};
CLScheduler::get().enqueue_op(*_mtx_b_reduction_kernel, mtx_b_red_pack, false);
}
// Run matrix A reduction kernel only if _b_offset is not equal to 0
if(_b_offset != 0)
{
ITensorPack mtx_a_red_pack =
{
{ TensorType::ACL_SRC, matrix_a },
{ TensorType::ACL_DST, vec_sum_row.get() }
};
CLScheduler::get().enqueue_op(*_mtx_a_reduction_kernel, mtx_a_red_pack, false);
}
// Run matrix multiply
if(_is_gemm_reshaped)
{
ITensorPack gemm_reshaped_pack;
if(_run_offset_contribution)
{
gemm_reshaped_pack = ITensorPack({ { TensorType::ACL_SRC_0, matrix_a },
{ TensorType::ACL_SRC_1, matrix_b },
{ TensorType::ACL_DST, _run_output_stage ? res32.get() : dst }
});
}
else
{
gemm_reshaped_pack = ITensorPack(
{
{ TensorType::ACL_SRC, matrix_a },
{ TensorType::ACL_SRC_1, matrix_b },
{ TensorType::ACL_BIAS, c },
{ TensorType::ACL_VEC_ROW_SUM, _b_offset == 0 ? nullptr : vec_sum_row.get() },
{ TensorType::ACL_VEC_COL_SUM, _a_offset == 0 ? nullptr : vec_sum_col.get() },
{ TensorType::ACL_SHIFTS, shifts.get() },
{ TensorType::ACL_MULTIPLIERS, multipliers.get() },
{ TensorType::ACL_DST, dst },
});
}
CLScheduler::get().enqueue_op(*_mm_reshaped_only_rhs_kernel, gemm_reshaped_pack, false);
}
else
{
ITensorPack gemm_native_pack =
{
{ TensorType::ACL_SRC_0, matrix_a },
{ TensorType::ACL_SRC_1, matrix_b },
{ TensorType::ACL_DST, _run_offset_contribution ? dst : res32.get() }
};
CLScheduler::get().enqueue_op(*_mm_native_kernel, gemm_native_pack, false);
}
if(_run_output_stage)
{
// Run offset contribution/output stage kernel
ITensorPack output_stage_pack =
{
{ TensorType::ACL_SRC, res32.get() },
{ TensorType::ACL_BIAS, c },
{ TensorType::ACL_VEC_ROW_SUM, _b_offset == 0 ? nullptr : vec_sum_row.get() },
{ TensorType::ACL_VEC_COL_SUM, _a_offset == 0 ? nullptr : vec_sum_col.get() },
{ TensorType::ACL_SHIFTS, shifts.get() },
{ TensorType::ACL_MULTIPLIERS, multipliers.get() },
{ TensorType::ACL_DST, dst },
};
CLScheduler::get().enqueue_op(*_offset_contribution_output_stage_kernel, output_stage_pack, true);
}
if(_run_offset_contribution)
{
// Run offset contribution kernel
ITensorPack offset_contrib_pack =
{
{ TensorType::ACL_SRC_DST, dst },
{ TensorType::ACL_BIAS, c },
{ TensorType::ACL_VEC_ROW_SUM, _b_offset == 0 ? nullptr : vec_sum_row.get() },
{ TensorType::ACL_VEC_COL_SUM, _a_offset == 0 ? nullptr : vec_sum_col.get() }
};
CLScheduler::get().enqueue_op(*_offset_contribution_kernel, offset_contrib_pack, true);
}
}
void ClGemmLowpMatrixMultiplyCore::prepare(ITensorPack &tensors)
{
if(!_is_prepared)
{
auto b = tensors.get_const_tensor(TensorType::ACL_SRC_1);
CLAuxTensorHandler tmp_b(offset_int_vec(RhsReshape), _tmp_b, tensors, true);
CLAuxTensorHandler vec_sum_col(offset_int_vec(VecSumCol), _vector_sum_col, tensors, true);
CLAuxTensorHandler rhs_qasymm8(offset_int_vec(RhsQAsymm8), _qasymm8_weights, tensors, false);
ARM_COMPUTE_ERROR_ON_NULLPTR(b);
if(_convert_to_qasymm8)
{
ITensorPack convert_to_qs8_pack = { { ACL_SRC, b }, { ACL_DST, rhs_qasymm8.get() } };
CLScheduler::get().enqueue_op(*_weights_to_qasymm8, convert_to_qs8_pack, false);
b->mark_as_unused();
}
if(_is_gemm_reshaped && _reshape_b_only_on_first_run)
{
// Run reshape kernel and mark original weights tensor as unused
ITensorPack mtx_b_pack =
{
{ TensorType::ACL_SRC, _convert_to_qasymm8 ? rhs_qasymm8.get() : b },
{ TensorType::ACL_DST, tmp_b.get() }
};
CLScheduler::get().enqueue_op(*_mtx_b_reshape_kernel, mtx_b_pack, false);
b->mark_as_unused();
}
// Run matrix B reduction kernel only if _a_offset is not equal to 0
if(_a_offset != 0 && _reshape_b_only_on_first_run)
{
ITensorPack mtx_b_red_pack =
{
{ TensorType::ACL_SRC, _convert_to_qasymm8 ? rhs_qasymm8.get() : b },
{ TensorType::ACL_DST, vec_sum_col.get() }
};
CLScheduler::get().enqueue_op(*_mtx_b_reduction_kernel, mtx_b_red_pack, false);
}
// Compute GEMM output multipliers and shifts for output stage
{
const size_t num_filters = (_gemm_info.gemmlowp_output_stage().is_quantized_per_channel) ? _gemm_info.gemmlowp_output_stage().gemmlowp_multipliers.size() : 1;
CLAuxTensorHandler multipliers(offset_int_vec(Multipliers), _gemm_output_stage_multipliers, tensors, false);
CLAuxTensorHandler shifts(offset_int_vec(Shifts), _gemm_output_stage_shifts, tensors, false);
ICLTensor *multiplier_tensor = multipliers.get();
if(multiplier_tensor != nullptr && multiplier_tensor->info()->total_size() > 0)
{
multiplier_tensor->map(CLScheduler::get().queue(), true);
std::memcpy(multiplier_tensor->ptr_to_element(Coordinates(0)), _gemm_info.gemmlowp_output_stage().gemmlowp_multipliers.data(), num_filters * sizeof(int32_t));
multiplier_tensor->unmap(CLScheduler::get().queue());
}
ICLTensor *shifts_tensor = shifts.get();
if(shifts.get() != nullptr && shifts_tensor->info()->total_size() > 0)
{
shifts_tensor->map(CLScheduler::get().queue(), true);
std::memcpy(shifts_tensor->ptr_to_element(Coordinates(0)), _gemm_info.gemmlowp_output_stage().gemmlowp_shifts.data(), num_filters * sizeof(int32_t));
shifts_tensor->unmap(CLScheduler::get().queue());
}
}
CLScheduler::get().queue().finish();
_is_prepared = true;
}
}
experimental::MemoryRequirements ClGemmLowpMatrixMultiplyCore::workspace() const
{
return _aux_mem;
}
} // namespace opencl
} // namespace arm_compute