blob: ffa1effc74ada58ece903d4cff6fc19528448fa3 [file] [log] [blame]
/*
* Copyright (c) 2018-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/gpu/cl/operators/ClWinogradConv2d.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/experimental/Types.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include "src/core/CL/kernels/CLFillBorderKernel.h"
#include "src/core/CL/kernels/CLFillBorderKernel.h"
#include "src/core/helpers/MemoryHelpers.h"
#include "src/gpu/cl/kernels/ClWinogradFilterTransformKernel.h"
#include "src/gpu/cl/kernels/ClWinogradInputTransformKernel.h"
#include "src/gpu/cl/kernels/ClWinogradOutputTransformKernel.h"
#include "src/gpu/cl/utils/ClAuxTensorHandler.h"
#include "src/common/utils/Log.h"
#include "support/Cast.h"
using namespace arm_compute::experimental;
namespace arm_compute
{
namespace opencl
{
namespace
{
Size2D winograd_output_tile(const Size2D &input_dims, const Size2D &kernel_dims, DataLayout data_layout)
{
Size2D output_tile = Size2D{};
const unsigned int kernel_max_dim = std::max(kernel_dims.width, kernel_dims.height);
// Check if the input spatial dimensions are smaller than 4
const bool is_input_lt4_nchw = (input_dims.width <= 4 && input_dims.height <= 4) && (data_layout == DataLayout::NCHW);
if(kernel_max_dim == 3U)
{
if(kernel_dims == Size2D(3U, 3U))
{
output_tile = is_input_lt4_nchw ? Size2D(2U, 2U) : Size2D(4U, 4U);
}
else if(kernel_dims == Size2D(3U, 1U))
{
output_tile = is_input_lt4_nchw ? Size2D(2U, 1U) : Size2D(4U, 1U);
}
else
{
output_tile = is_input_lt4_nchw ? Size2D(1U, 2U) : Size2D(1U, 4U);
}
}
else if(kernel_max_dim == 5U)
{
output_tile = Size2D(kernel_dims.width == 1 ? 1U : 4U,
kernel_dims.height == 1 ? 1U : 4U);
}
else if(kernel_max_dim == 7U)
{
output_tile = Size2D(kernel_dims.width == 1 ? 1U : 2U,
kernel_dims.height == 1 ? 1U : 2U);
}
return output_tile;
}
bool check_support_fast_math(const Size2D &output_tile, const Size2D &kernel_size)
{
// Check if we want to configure a Winograd configuration which requires fast math
using WinogradConfiguration = std::pair<std::pair<int, int>, std::pair<int, int>>;
std::vector<WinogradConfiguration> fast_math_winograd =
{
WinogradConfiguration(std::pair<int, int>(4, 4), std::pair<int, int>(5, 5)),
WinogradConfiguration(std::pair<int, int>(2, 2), std::pair<int, int>(7, 7))
};
auto p = std::make_pair(std::pair<int, int>(output_tile.width, output_tile.height),
std::pair<int, int>(kernel_size.width, kernel_size.height));
return std::find(fast_math_winograd.begin(), fast_math_winograd.end(), p) != fast_math_winograd.end();
}
Status validate_arguments(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const PadStrideInfo &conv_info,
const ActivationLayerInfo &act_info, bool enable_fast_math)
{
// Get indeces for the width and height
const size_t idx_width = get_data_layout_dimension_index(src->data_layout(), DataLayoutDimension::WIDTH);
const size_t idx_height = get_data_layout_dimension_index(src->data_layout(), DataLayoutDimension::HEIGHT);
// Input shape, kernel size and output tile
const Size2D input_dims = Size2D(src->tensor_shape()[idx_width], src->tensor_shape()[idx_height]);
const Size2D kernel_size = Size2D(weights->tensor_shape()[idx_width], weights->tensor_shape()[idx_height]);
const Size2D output_tile = winograd_output_tile(input_dims, kernel_size, src->data_layout());
ARM_COMPUTE_RETURN_ERROR_ON_MSG(((conv_info.pad_left() > (kernel_size.x() / 2u)) || (conv_info.pad_right() > (kernel_size.x() / 2u))), "Winograd only supports padding up to half kernel size");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(((conv_info.pad_top() > (kernel_size.y() / 2u)) || (conv_info.pad_bottom() > (kernel_size.y() / 2u))), "Winograd only supports padding up to half kernel size");
// Check if the Winograd configuration requires fast math
if(!enable_fast_math)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F32); //disable winograd for fp16 if fast math is false.
ARM_COMPUTE_RETURN_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size), "This Winograd configuration requires enable_fast_math=true");
}
const WinogradInfo winograd_info = WinogradInfo(output_tile,
kernel_size,
input_dims,
conv_info,
src->data_layout());
// Validate input transform
const TensorShape input0_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*src, winograd_info);
const TensorInfo input0 = src->clone()->set_tensor_shape(input0_shape);
ARM_COMPUTE_RETURN_ON_ERROR(kernels::ClWinogradInputTransformKernel::validate(src, &input0, winograd_info));
// Validate filter transform
const TensorShape input1_shape = misc::shape_calculator::compute_winograd_filter_transform_shape(*weights, winograd_info);
const TensorInfo input1 = weights->clone()->set_tensor_shape(input1_shape);
ARM_COMPUTE_RETURN_ON_ERROR(kernels::ClWinogradFilterTransformKernel::validate(weights, &input1, winograd_info));
// Validate batched matrix multiply
TensorShape batched_mm_output_shape = input0.tensor_shape();
batched_mm_output_shape[0] = input1.tensor_shape()[0];
const TensorInfo batched_mm_output = input0.clone()->set_tensor_shape(batched_mm_output_shape);
ARM_COMPUTE_RETURN_ON_ERROR(ClGemm::validate(&input0, &input1, nullptr, &batched_mm_output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/, 0, false, false,
GEMMLowpOutputStageInfo(), (src->data_type() == DataType::F16))));
// Configure output transform
ARM_COMPUTE_RETURN_ON_ERROR(kernels::ClWinogradOutputTransformKernel::validate(&batched_mm_output, biases, dst, winograd_info, act_info));
return Status{};
}
} // namespace
ClWinogradConv2d::ClWinogradConv2d()
: _batched_mm(),
_input_transform(std::make_unique<kernels::ClWinogradInputTransformKernel>()),
_filter_transform(std::make_unique<kernels::ClWinogradFilterTransformKernel>()),
_output_transform(std::make_unique<kernels::ClWinogradOutputTransformKernel>()),
_border_handler(),
_input0(),
_input1(),
_batched_mm_output(),
_is_prepared(false),
_aux_mem()
{
}
ClWinogradConv2d::~ClWinogradConv2d() = default;
void ClWinogradConv2d::configure(const ClCompileContext &compile_context, ITensorInfo *src, ITensorInfo *weights, ITensorInfo *biases, ITensorInfo *dst,
const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info, bool enable_fast_math)
{
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, weights, biases, dst, conv_info, act_info, enable_fast_math));
ARM_COMPUTE_LOG_PARAMS(src, weights, biases, dst, conv_info, act_info, enable_fast_math);
// Get indices for the width and height
const size_t idx_width = get_data_layout_dimension_index(src->data_layout(), DataLayoutDimension::WIDTH);
const size_t idx_height = get_data_layout_dimension_index(src->data_layout(), DataLayoutDimension::HEIGHT);
// Input shape, kernel size and output tile
const Size2D input_dims = Size2D(src->tensor_shape()[idx_width], src->tensor_shape()[idx_height]);
const Size2D kernel_size = Size2D(weights->tensor_shape()[idx_width], weights->tensor_shape()[idx_height]);
const Size2D output_tile = winograd_output_tile(input_dims, kernel_size, src->data_layout());
// Check if the Winograd configuration requires fast math
if(!enable_fast_math)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F32); //disable winograd for fp16 if fast math is false.
ARM_COMPUTE_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size), "This Winograd configuration requires enable_fast_math=true");
}
const WinogradInfo winograd_info = WinogradInfo(output_tile,
kernel_size,
input_dims,
conv_info,
src->data_layout());
_is_prepared = false;
// Configure input transform
_input_transform->configure(compile_context, src, &_input0, winograd_info);
_border_handler.configure(compile_context, src, _input_transform->border_size(), BorderMode::CONSTANT, PixelValue());
// Configure filter transform
_filter_transform->configure(compile_context, weights, &_input1, winograd_info);
// Configure batched matrix multiply
_batched_mm.configure(compile_context, &_input0, &_input1, nullptr, &_batched_mm_output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/, 0,
false, false,
GEMMLowpOutputStageInfo(),
(src->data_type() == DataType::F16)));
// Configure output transform
_output_transform->configure(compile_context, &_batched_mm_output, biases, dst, winograd_info, act_info);
_aux_mem = _batched_mm.workspace();
const MemoryLifetime wino_wei_lifetm = std::any_of(std::begin(_aux_mem), std::end(_aux_mem), [](const auto & r)
{
return (r.lifetime == MemoryLifetime::Persistent) && (r.size > 0);
}) ?
MemoryLifetime::Prepare :
MemoryLifetime::Persistent;
_aux_mem.push_back(MemoryInfo(offset_int_vec(2), MemoryLifetime::Temporary, _input0.total_size()));
_aux_mem.push_back(MemoryInfo(offset_int_vec(3), wino_wei_lifetm, _input1.total_size()));
_aux_mem.push_back(MemoryInfo(offset_int_vec(4), MemoryLifetime::Temporary, _batched_mm_output.total_size()));
}
Status ClWinogradConv2d::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const PadStrideInfo &conv_info,
const ActivationLayerInfo &act_info, bool enable_fast_math)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, weights, biases, dst, conv_info, act_info, enable_fast_math));
return Status{};
}
void ClWinogradConv2d::run(ITensorPack &tensors)
{
const bool is_gemm_reshaped = _aux_mem[3].lifetime == MemoryLifetime::Prepare;
auto src = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_0));
auto biases = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_2));
auto dst = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
CLAuxTensorHandler input0(offset_int_vec(2), _input0, tensors, true);
CLAuxTensorHandler input1(offset_int_vec(3), _input1, tensors, true, is_gemm_reshaped);
CLAuxTensorHandler batched_mm_output(offset_int_vec(4), _batched_mm_output, tensors, true);
prepare(tensors);
// Run input transform
ITensorPack pack_it
{
{ TensorType::ACL_SRC, src },
{ TensorType::ACL_DST, input0.get() },
};
CLScheduler::get().enqueue_op(_border_handler, pack_it, false);
CLScheduler::get().enqueue_op(*_input_transform, pack_it, false);
// Run batched matrix multiplication
ITensorPack pack_mm = tensors;
pack_mm.add_const_tensor(TensorType::ACL_SRC_0, input0.get());
pack_mm.add_tensor(TensorType::ACL_DST, batched_mm_output.get());
is_gemm_reshaped ? pack_mm.remove_tensor(TensorType::ACL_SRC_1) : pack_mm.add_const_tensor(TensorType::ACL_SRC_1, input1.get());
_batched_mm.run(pack_mm);
// Run output transform
ITensorPack pack_ot
{
{ TensorType::ACL_SRC_0, batched_mm_output.get() },
{ TensorType::ACL_SRC_1, biases },
{ TensorType::ACL_DST, dst },
};
CLScheduler::get().enqueue_op(*_output_transform, pack_ot);
}
void ClWinogradConv2d::prepare(ITensorPack &tensors)
{
if(!_is_prepared)
{
auto weights = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_1));
ICLTensor *in1_aux = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(offset_int_vec(3)));
CLAuxTensorHandler input1(_input1, *in1_aux);
ITensorPack pack_ft
{
{ TensorType::ACL_SRC, weights },
{ TensorType::ACL_DST, input1.get() },
};
// Run filter transform and mark original weights as unused
CLScheduler::get().enqueue_op(*_filter_transform, pack_ft, false);
weights->mark_as_unused();
// Prepare GEMM and release reshaped weights if marked unused by ClGemm
ITensorPack mm_prepare_pack = tensors;
mm_prepare_pack.add_tensor(ACL_SRC_1, input1.get());
_batched_mm.prepare(mm_prepare_pack);
CLScheduler::get().queue().finish();
_is_prepared = true;
}
}
experimental::MemoryRequirements ClWinogradConv2d::workspace() const
{
return _aux_mem;
}
} // namespace opencl
} // namespace arm_compute