blob: 15ad11628932333458a73aa1d3895409c09a0e79 [file] [log] [blame]
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#if defined(POOL_AVG) || defined(POOL_L2)
#define POOL_OP(x, y) ((x) + (y))
#else /* defined(POOL_AVG) || defined(POOL_L2) */
#if defined(QUANTIZED)
#define POOL_OP(x, y) (max((x), (y)))
#else // defined(QUANTIZED)
#define POOL_OP(x, y) (fmax((x), (y)))
#endif // defined(QUANTIZED)
#endif /* defined(POOL_AVG) || defined(POOL_L2) */
#if defined(POOL_L2)
#define POW2_OP(x, vec_size) ((x) * (x))
#else /* defined(POOL_L2) */
#define POW2_OP(x, vec_size) (x)
#endif /* defined(POOL_L2) */
#define DIV_OP(x, y) (x * (1.f / y))
#define SQRT_OP(x) sqrt((x))
#if defined(FP_MIXED_PRECISION) || defined(QUANTIZED)
#define CONVERT_TO_ACC_DATA_TYPE(x, n) CONVERT(x, VEC_DATA_TYPE(ACC_DATA_TYPE, n))
#define VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(n, offset, ptr) CONVERT_TO_ACC_DATA_TYPE(vload##n(offset, ptr), n)
#else /* defined(FP_MIXED_PRECISION) || defined(QUANTIZED)*/
#define VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(n, offset, ptr) vload##n(offset, ptr)
#endif /* defined(FP_MIXED_PRECISION) || defined(QUANTIZED)*/
ACC_DATA_TYPE calculate_avg_scale(const int pool_size_x, const int pool_size_y, const int upper_bound_w, const int upper_bound_h,
const int pad_x, const int pad_y, const int stride_x, const int stride_y)
{
int start_x = get_global_id(0) * stride_x - pad_x;
int start_y = get_global_id(1) * stride_y - pad_y;
const int end_x = min(start_x + pool_size_x, upper_bound_w);
const int end_y = min(start_y + pool_size_y, upper_bound_h);
#if defined(EXCLUDE_PADDING)
start_x = max(0, start_x);
start_y = max(0, start_y);
#endif /* defined(EXCLUDE_PADDING) */
return ((end_y - start_y) * (end_x - start_x));
}
#if defined(POOL_SIZE_X) && defined(POOL_SIZE_Y)
/** Performs a pooling function of pool size equal to N (NCHW)
*
* @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32/QASYMM8;
* @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13;
* @note In case of average pooling the following information must be passed at compile time:
* -DPOOL_AVG must be provided otherwise max pooling will be performed.
* -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad)
* -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
* -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
* @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32/QASYMM8
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void pooling_layer_MxN_nchw(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst))
{
int id0 = get_global_id(0);
int id1 = get_global_id(1);
int id2 = get_global_id(2);
int x_coords = (id0 * STRIDE_X) - PAD_X;
int y_coords = (id1 * STRIDE_Y) - PAD_Y;
__global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + y_coords * (int)src_stride_y + id2 * src_stride_z;
VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
vdata = INITIAL_VALUE;
ACC_DATA_TYPE sdata = INITIAL_VALUE;
const int end_x = min((int)POOL_SIZE_X, (int)(SRC_WIDTH - x_coords));
const int end_y = min((int)POOL_SIZE_Y, (int)(SRC_HEIGHT - y_coords));
// Load data
for(int y = 0; y < end_y; ++y)
{
if((y_coords + y) >= 0)
{
int x = 0;
for(; x <= (end_x - 8); x += 8)
{
int8 src_x = (int8)(x_coords + x) + VEC_OFFS(int, 8);
#if defined(POOL_AVG) || defined(POOL_L2)
SELECT_VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
cond_x = CONVERT(src_x < 0, SELECT_VEC_DATA_TYPE(ACC_DATA_TYPE, 8));
src_x = clamp(src_x, (int8)0, (int8)(SRC_WIDTH - 1));
VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
data0 = select(VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)(src_addr + src_x.s0 * sizeof(DATA_TYPE) + y * src_stride_y)), (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))0, REVERSE(cond_x, 8));
#else // defined(POOL_AVG) || defined(POOL_L2)
src_x = clamp(src_x, 0, SRC_WIDTH - 1);
VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
data0 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)(src_addr + src_x.s0 * sizeof(DATA_TYPE) + y * src_stride_y));
#endif // defined(POOL_AVG) || defined(POOL_L2
#if defined(POOL_L2)
// Raise to power of 2 for L2 Pooling
data0 *= data0;
#endif /* defined(POOL_L2) */
vdata = POOL_OP(vdata, data0);
}
// Leftover
for(; x < end_x; ++x)
{
int src_x = x_coords + x;
#if defined(POOL_AVG) || defined(POOL_L2)
SELECT_DATA_TYPE(ACC_DATA_TYPE)
cond_x = (src_x < 0);
src_x = clamp(src_x, 0, SRC_WIDTH - 1);
ACC_DATA_TYPE data0 = select((ACC_DATA_TYPE)(*((__global DATA_TYPE *)(src_addr + src_x * sizeof(DATA_TYPE) + y * src_stride_y))), (ACC_DATA_TYPE)0, cond_x);
#else // defined(POOL_AVG) || defined(POOL_L2)
src_x = clamp(src_x, 0, SRC_WIDTH - 1);
ACC_DATA_TYPE data0 = (ACC_DATA_TYPE)(*((__global DATA_TYPE *)(src_addr + src_x * sizeof(DATA_TYPE) + y * src_stride_y)));
#endif // defined(POOL_AVG) || defined(POOL_L2)
#if defined(POOL_L2)
// Raise to power of 2 for L2 Pooling
data0 *= data0;
#endif /* defined(POOL_L2) */
sdata = POOL_OP(sdata, data0);
}
}
}
// Reduce result
VEC_DATA_TYPE(ACC_DATA_TYPE, 4)
reduce4 = POOL_OP(vdata.s0123, vdata.s4567);
VEC_DATA_TYPE(ACC_DATA_TYPE, 2)
reduce2 = POOL_OP(reduce4.s01, reduce4.s23);
ACC_DATA_TYPE res = POOL_OP(reduce2.s0, reduce2.s1);
res = POOL_OP(res, sdata);
#if defined(POOL_AVG) || defined(POOL_L2)
// Divide by pool region in case of average pooling
res = DIV_OP(res, calculate_avg_scale(POOL_SIZE_X, POOL_SIZE_Y, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y));
#endif /* defined(POOL_AVG) || defined(POOL_L2) */
#if defined(QUANTIZED)
DATA_TYPE result_q8 = CONVERT(res, DATA_TYPE);
#if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT)
const float result_f32 = convert_float(result_q8);
const float input_offset = (float)OFFSET_IN1;
const float input_scale = (float)SCALE_IN1;
const float scale_out = (float)SCALE_OUT;
const float offset_out = (float)OFFSET_OUT;
const float in_f32 = (result_f32 - input_offset) * input_scale;
const float out_f32 = in_f32 / scale_out + offset_out;
result_q8 = CONVERT_SAT(convert_int_rte(out_f32), DATA_TYPE);
#endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */
*(__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + id0 * sizeof(DATA_TYPE) + id1 * dst_stride_y + id2 * dst_stride_z) = result_q8;
#else // defined(QUANTIZED)
#if defined(POOL_L2)
// Take square root of the result in L2 pooling
res = SQRT_OP(res);
#endif /* defined(POOL_L2) */
// Store result
*(__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + id0 * sizeof(DATA_TYPE) + id1 * dst_stride_y + id2 * dst_stride_z) = (DATA_TYPE)res;
#endif // defined(QUANTIZED)
}
#endif // defined(POOL_SIZE_X) && defined(POOL_SIZE_Y)
/** Performs a MAX pooling of pool size equal to 2, and record max value indices for NCHW.
*
* @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F32
* @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13;
* @note Tensors width and height must be passed at compile time using -DMAX_WIDTH and -DMAX_HEIGHT
* @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] indices_ptr Pointer to the indices tensor. Supported data types: U32
* @param[in] indices_stride_x Stride of the indices tensor in X dimension (in bytes)
* @param[in] indices_step_x indices_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] indices_stride_y Stride of the indices tensor in Y dimension (in bytes)
* @param[in] indices_step_y indices_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] indices_stride_z Stride of the indices tensor in Z dimension (in bytes)
* @param[in] indices_step_z indices_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] indices_offset_first_element_in_bytes The offset of the first element in the indices tensor
*/
__kernel void pooling_layer_2_nchw_indices(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(indices))
{
int id0 = get_global_id(0);
int id1 = get_global_id(1);
int id2 = get_global_id(2);
int2 x_coords = clamp((int2)((id0 * STRIDE_X) - PAD_X), (int2)0, (int2)(SRC_WIDTH - 1));
int2 y_coords = clamp((int2)((id1 * STRIDE_Y) - PAD_Y) + VEC_OFFS(int, 2), (int2)0, (int2)(SRC_HEIGHT - 1));
__global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + id2 * src_stride_z;
// Load data
VEC_DATA_TYPE(DATA_TYPE, 2)
data0 = VLOAD(2)(0, (__global DATA_TYPE *)(src_addr + x_coords.s0 * sizeof(DATA_TYPE) + y_coords.s0 * (int)src_stride_y));
VEC_DATA_TYPE(DATA_TYPE, 2)
data1 = VLOAD(2)(0, (__global DATA_TYPE *)(src_addr + x_coords.s1 * sizeof(DATA_TYPE) + y_coords.s1 * (int)src_stride_y));
// Perform calculations
DATA_TYPE data0_max = POOL_OP(data0.s0, data0.s1);
DATA_TYPE data1_max = POOL_OP(data1.s0, data1.s1);
DATA_TYPE res = POOL_OP(data0_max, data1_max);
// Store result
*(__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + id0 * sizeof(DATA_TYPE) + id1 * dst_stride_y + id2 * dst_stride_z) = res;
#if defined(SRC_BATCH)
uint offset_top = (x_coords.s0 + y_coords.s0 * SRC_WIDTH + id2 * (SRC_WIDTH * SRC_HEIGHT)) % SRC_BATCH;
uint offset_bottom = offset_top + SRC_WIDTH;
uint index0 = select(offset_top + 1, offset_top, isgreaterequal(data0.s0, data0.s1));
uint index1 = select(offset_bottom + 1, offset_bottom, isgreaterequal(data1.s0, data1.s1));
uint index = select(index1, index0, isgreaterequal(data0_max, data1_max));
*(__global uint *)(indices_ptr + indices_offset_first_element_in_bytes + id0 * sizeof(uint) + id1 * indices_stride_y + id2 * indices_stride_z) = index;
#endif // defined(SRC_BATCH)
}