blob: 27878cde360c825d5443dbc4e8b2255abdeadad4 [file] [log] [blame]
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_HELPERS_ASYMM_H
#define ARM_COMPUTE_HELPERS_ASYMM_H
#include "helpers.h"
/** Convert the given vector with round to nearest even rounding mode
*
* @param[in] x The target to be converted
* @param[in] type The target type
*
* @return The converted vector
*/
#define CONVERT_DOWN_RTE_STR(x, type) (convert_##type##_rte((x)))
#define CONVERT_DOWN_RTE(x, type) CONVERT_DOWN_RTE_STR(x, type)
/** Quantize a floating-point scalar value to 8-bit asymmetric
*
* @param[in] input Input value to quantize
* @param[in] offset Quantization offset
* @param[in] scale Quantization scale
*
* @return quantized value
*/
inline uchar quantize_qasymm8(float input, float offset, float scale)
{
float out_f32 = input / scale + offset;
uchar res_u8 = CONVERT_SAT(CONVERT_DOWN_RTE(out_f32, int), uchar);
return res_u8;
}
/** Dequantize a scalar value from 8-bit asymmetric to floating-point
*
* @param[in] input Input value to quantize
* @param[in] offset Quantization offset
* @param[in] scale Quantization scale
*
* @return quantized value
*/
inline float dequantize_qasymm8(uchar input, float offset, float scale)
{
return ((float)input - offset) * scale;
}
/** Dequantize a scalar value from signed 8-bit asymmetric to floating-point
*
* @param[in] input Input value to quantize
* @param[in] offset Quantization offset
* @param[in] scale Quantization scale
*
* @return quantized value
*/
inline float dequantize_qasymm8_signed(char input, float offset, float scale)
{
return ((float)input - offset) * scale;
}
/** Quantize a vector of values from floating-point
*
* @param[in] type Output data type.
* @param[in] size Size of vector.
*
* @return quantized values
*/
#define QUANTIZE_IMPL(type, size) \
inline VEC_DATA_TYPE(type, size) quantize_##type##size(VEC_DATA_TYPE(float, size) input, float offset, float scale) \
{ \
VEC_DATA_TYPE(float, size) \
out_f32 = input / (VEC_DATA_TYPE(float, size))(scale) + (VEC_DATA_TYPE(float, size))(offset); \
VEC_DATA_TYPE(type, size) \
res = CONVERT_SAT(CONVERT_DOWN_RTE(out_f32, VEC_DATA_TYPE(int, size)), VEC_DATA_TYPE(type, size)); \
return res; \
}
/** Dequantize a vector of values to floating-point
*
* @param[in] type Input data type.
* @param[in] size Size of vector.
*
* @return dequantized values in floating point
*/
#define DEQUANTIZE_IMPL(type, size) \
inline VEC_DATA_TYPE(float, size) dequantize_##type##size(VEC_DATA_TYPE(type, size) input, float offset, float scale) \
{ \
return (CONVERT(input, VEC_DATA_TYPE(float, size)) - offset) * scale; \
}
/** Correctly-rounded-to-nearest division by a power-of-two.
*
* @param[in] size Size of vector.
*
* @return Correctly-rounded-to-nearest division by a power-of-two.
*/
#define ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(size) \
inline VEC_DATA_TYPE(int, size) asymm_rounding_divide_by_POW2_##size(VEC_DATA_TYPE(int, size) x, VEC_DATA_TYPE(int, size) exponent) \
{ \
const VEC_DATA_TYPE(int, size) \
zero = (VEC_DATA_TYPE(int, size))0; \
const VEC_DATA_TYPE(int, size) \
one = (VEC_DATA_TYPE(int, size))1; \
VEC_DATA_TYPE(int, size) \
mask = (one << exponent) - one; \
VEC_DATA_TYPE(int, size) \
threshold = (mask >> 1) + select(zero, one, (SELECT_VEC_DATA_TYPE(int, size))(x < 0)); \
return (x >> exponent) + select(zero, one, (SELECT_VEC_DATA_TYPE(int, size))((x & mask) > threshold)); \
}
/** Product of two numbers, interpreting them as fixed-point values in the interval [-1, 1),
* rounding to the nearest value, and saturating -1 * -1 to the maximum value.
*
* @param[in] size Size of vector.
*
* @return Product of two fixed-point numbers.
*/
#define ASYMM_MULT_IMPL(size) \
inline VEC_DATA_TYPE(int, size) asymm_mult##size(VEC_DATA_TYPE(int, size) a, VEC_DATA_TYPE(int, size) b) \
{ \
VEC_DATA_TYPE(int, size) \
overflow = a == b && a == INT_MIN; \
VEC_DATA_TYPE(long, size) \
a_64 = convert_long##size(a); \
VEC_DATA_TYPE(long, size) \
b_64 = convert_long##size(b); \
VEC_DATA_TYPE(long, size) \
ab_64 = a_64 * b_64; \
/* Revert COMPMID-907 */ \
VEC_DATA_TYPE(long, size) \
mask1 = 1 << 30; \
VEC_DATA_TYPE(long, size) \
mask2 = 1 - (1 << 30); \
VEC_DATA_TYPE(long, size) \
is_positive_or_zero = ab_64 >= 0; \
VEC_DATA_TYPE(long, size) \
nudge = select(mask2, mask1, (SELECT_VEC_DATA_TYPE(long, size))(is_positive_or_zero)); \
VEC_DATA_TYPE(long, size) \
mask = 1ll << 31; \
VEC_DATA_TYPE(int, size) \
ab_x2_high32 = convert_int##size((ab_64 + nudge) / mask); \
return select(ab_x2_high32, INT_MAX, (SELECT_VEC_DATA_TYPE(int, size))(overflow)); \
}
/** Calculates \f$ exp(x) \f$ for x in [-1/4, 0).
*
* @param[in] size Size of vector.
*
* @return Result in fixed-point format Q0.
*/
#define ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(size) \
inline VEC_DATA_TYPE(int, size) asymm_exp_on_interval_between_negative_one_quarter_and_0_excl##size(VEC_DATA_TYPE(int, size) a) \
{ \
const VEC_DATA_TYPE(int, size) constant_term = 1895147668; \
const VEC_DATA_TYPE(int, size) constant_1_over_3 = 715827883; \
const int k_fractional_bits = 31; \
VEC_DATA_TYPE(int, size) \
x = a + (1 << (k_fractional_bits - 3)); \
VEC_DATA_TYPE(int, size) \
x2 = ASYMM_MULT(x, x, size); \
VEC_DATA_TYPE(int, size) \
x3 = ASYMM_MULT(x2, x, size); \
VEC_DATA_TYPE(int, size) \
x4 = ASYMM_MULT(x2, x2, size); \
VEC_DATA_TYPE(int, size) \
x4_over_4 = ASYMM_ROUNDING_DIVIDE_BY_POW2(x4, 2, size); \
VEC_DATA_TYPE(int, size) \
x4_over_24_plus_x3_over_6_plus_x2 = ASYMM_MULT((x4_over_4 + x3), constant_1_over_3, size) + x2; \
VEC_DATA_TYPE(int, size) \
x4_over_24_plus_x3_over_6_plus_x2_over_2 = ASYMM_ROUNDING_DIVIDE_BY_POW2(x4_over_24_plus_x3_over_6_plus_x2, 1, size); \
return constant_term + ASYMM_MULT(constant_term, x + x4_over_24_plus_x3_over_6_plus_x2_over_2, size); \
}
/** Each bit of the result is set to the corresponding bit of either then_val or
* else_val depending on whether the corresponding bit of if_mask is set.
* Equivalent to the VBSL instruction in Arm® Neon™.
*
* @param[in] size Size of vector.
*
* @returns Result contaning bits from @p then_val or from @p else_val depending on corresponding bit in @p if_mask is set or not.
*/
#define ASYMM_SELECT_USING_MASK_IMPL(size) \
inline VEC_DATA_TYPE(int, size) asymm_select_using_mask##size(VEC_DATA_TYPE(int, size) if_mask, VEC_DATA_TYPE(int, size) then_val, VEC_DATA_TYPE(int, size) else_val) \
{ \
return (if_mask & then_val) ^ (~if_mask & else_val); \
}
/** For each element of input vector, the corresponding bits of the result item are set
* if the input item is zero.
*
* @param[in] size Size of vector.
*
* @returns Output vector with bits set when corresponding bit in @p a is zero.
*/
#define ASYMM_MASK_IF_ZERO_IMPL(size) \
inline VEC_DATA_TYPE(int, size) asymm_mask_if_zero##size(VEC_DATA_TYPE(int, size) a) \
{ \
const VEC_DATA_TYPE(int, size) all_zeros = 0; \
const VEC_DATA_TYPE(int, size) all_ones = ~0; \
return select(all_zeros, all_ones, (SELECT_VEC_DATA_TYPE(int, size))(a == 0)); \
}
/** For each element of input vector, the corresponding bits of the result item are set
* if the input item is non-zero.
*
* @param[in] size Size of vector.
*
* @returns Output vector with bits set when corresponding bit in @p a is non zero.
*/
#define ASYMM_MASK_IF_NON_ZERO_IMPL(size) \
inline VEC_DATA_TYPE(int, size) asymm_mask_if_non_zero##size(VEC_DATA_TYPE(int, size) a) \
{ \
const VEC_DATA_TYPE(int, size) all_zeros = 0; \
const VEC_DATA_TYPE(int, size) all_ones = ~0; \
return select(all_zeros, all_ones, (SELECT_VEC_DATA_TYPE(int, size))(a != 0)); \
}
#define EXP_BARREL_SHIFTER_IMPL(size) \
inline VEC_DATA_TYPE(int, size) exp_barrel_shifter##size(VEC_DATA_TYPE(int, size) result, int exponent, int fp_multiplier, int k_integer_bits, int k_fractional_bits, VEC_DATA_TYPE(int, size) remainder) \
{ \
if(k_integer_bits > exponent) \
{ \
const int k_shift_amount = k_integer_bits > exponent ? k_fractional_bits + exponent : 0; \
return ASYMM_SELECT_USING_MASK( \
ASYMM_MASK_IF_NON_ZERO(remainder & (1 << k_shift_amount), size), \
ASYMM_MULT(result, fp_multiplier, size), result, size); \
} \
\
return result; \
}
/** Calculates \f$ exp(x) \f$ for x < 0.
*
* @param[in] size Size of vector.
*
* @return Result in fixed-point format Q0.
*/
#define ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(size) \
inline VEC_DATA_TYPE(int, size) asymm_exp_on_negative_values##size(VEC_DATA_TYPE(int, size) a, int k_integer_bits) \
{ \
const int k_fractional_bits = 31 - k_integer_bits; \
VEC_DATA_TYPE(int, size) \
k_one_quarter = 1 << (k_fractional_bits - 2); \
VEC_DATA_TYPE(int, size) \
mask = k_one_quarter - 1; \
VEC_DATA_TYPE(int, size) \
a_mod_quarter_minus_one_quarter = (a & mask) - k_one_quarter; \
VEC_DATA_TYPE(int, size) \
a_mod_quarter_minus_one_quarter_scaled = a_mod_quarter_minus_one_quarter << k_integer_bits; \
VEC_DATA_TYPE(int, size) \
result = ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL(a_mod_quarter_minus_one_quarter_scaled, size); \
VEC_DATA_TYPE(int, size) \
remainder = a_mod_quarter_minus_one_quarter - a; \
\
result = EXP_BARREL_SHIFTER(result, -2, 1672461947, k_integer_bits, k_fractional_bits, remainder, size); \
result = EXP_BARREL_SHIFTER(result, -1, 1302514674, k_integer_bits, k_fractional_bits, remainder, size); \
result = EXP_BARREL_SHIFTER(result, +0, 790015084, k_integer_bits, k_fractional_bits, remainder, size); \
result = EXP_BARREL_SHIFTER(result, +1, 290630308, k_integer_bits, k_fractional_bits, remainder, size); \
result = EXP_BARREL_SHIFTER(result, +2, 39332535, k_integer_bits, k_fractional_bits, remainder, size); \
result = EXP_BARREL_SHIFTER(result, +3, 720401, k_integer_bits, k_fractional_bits, remainder, size); \
result = EXP_BARREL_SHIFTER(result, +4, 242, k_integer_bits, k_fractional_bits, remainder, size); \
\
if(k_integer_bits > 5) \
{ \
const VEC_DATA_TYPE(int, size) clamp = -(1 << (k_fractional_bits + 5)); \
result = ASYMM_SELECT_USING_MASK(ASYMM_MASK_IF_NON_ZERO(a < clamp, size), 0, result, size); \
} \
\
const VEC_DATA_TYPE(int, size) Q0_one = INT_MAX; \
return ASYMM_SELECT_USING_MASK(ASYMM_MASK_IF_ZERO(a, size), Q0_one, result, size); \
}
/** Calculates the product of a integer value by a power of two, with either a positive exponent
* (equivalent to an arithmetic left shift, saturating) or a negative exponent
* (equivalent to an arithmetic right shift, rounding to nearest).
*
* @param[in] size Size of vector.
*
* @return Arithmetic left or right shift.
*/
#define ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(size) \
inline VEC_DATA_TYPE(int, size) asymm_saturating_rounding_mult_by_pow2##size(VEC_DATA_TYPE(int, size) x, int exponent) \
{ \
if(exponent < 0) \
{ \
return ASYMM_ROUNDING_DIVIDE_BY_POW2(x, -exponent, size); \
} \
\
const VEC_DATA_TYPE(int, size) min = INT_MIN; \
const VEC_DATA_TYPE(int, size) max = INT_MAX; \
int threshold = ((1 << (31 - exponent)) - 1); \
VEC_DATA_TYPE(int, size) \
positive_mask = ASYMM_MASK_IF_NON_ZERO(x > threshold, size); \
VEC_DATA_TYPE(int, size) \
negative_mask = ASYMM_MASK_IF_NON_ZERO(x < -threshold, size); \
VEC_DATA_TYPE(int, size) \
result = x << exponent; \
result = ASYMM_SELECT_USING_MASK(positive_mask, max, result, size); \
result = ASYMM_SELECT_USING_MASK(negative_mask, min, result, size); \
return result; \
}
/** Calculates (a+b)/2, rounded to the nearest integer.
* Equivalent to VRHADD in the Arm Arm® Neon™ instruction set.
*
* @param[in] size Size of vector.
*
* @return (a+b)/2, rounded to the nearest integer.
*/
#define ASYMM_ROUNDING_HALF_SUM_IMPL(size) \
inline VEC_DATA_TYPE(int, size) asymm_rounding_half_sum##size(VEC_DATA_TYPE(int, size) a, VEC_DATA_TYPE(int, size) b) \
{ \
VEC_DATA_TYPE(long, size) \
a64 = convert_long##size(a); \
VEC_DATA_TYPE(long, size) \
b64 = convert_long##size(b); \
VEC_DATA_TYPE(long, size) \
sum = a64 + b64; \
const VEC_DATA_TYPE(long, size) one = 1; \
const VEC_DATA_TYPE(long, size) minus_one = -1; \
VEC_DATA_TYPE(long, size) \
sign = select(minus_one, one, (SELECT_VEC_DATA_TYPE(long, size))(sum >= 0)); \
return convert_int##size((sum + sign) / 2); \
}
/** Calculates \f$ 1 / (1 + x) \f$ for x in (0, 1).
*
* @param[in] size Size of vector.
*
* @return Result in fixed-point format Q0.
*/
#define ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(size) \
inline VEC_DATA_TYPE(int, size) asymm_one_over_one_plus_x_for_x_in_0_1##size(VEC_DATA_TYPE(int, size) a) \
{ \
const VEC_DATA_TYPE(int, size) Q0_one = INT_MAX; \
const VEC_DATA_TYPE(int, size) Q2_one = 1 << (31 - 2); \
VEC_DATA_TYPE(int, size) \
half_denominator = ASYMM_ROUNDING_HALF_SUM(a, Q0_one, size); \
const VEC_DATA_TYPE(int, size) Q2_48_over_17 = 1515870810; \
const VEC_DATA_TYPE(int, size) Q2_neg_32_over_17 = -1010580540; \
VEC_DATA_TYPE(int, size) \
x = Q2_48_over_17 + ASYMM_MULT(half_denominator, Q2_neg_32_over_17, size); \
for(int i = 0; i < 3; i++) \
{ \
VEC_DATA_TYPE(int, size) \
half_denominator_times_x = ASYMM_MULT(half_denominator, x, size); \
VEC_DATA_TYPE(int, size) \
one_minus_half_denominator_times_x = Q2_one - half_denominator_times_x; \
VEC_DATA_TYPE(int, size) \
tmp = ASYMM_MULT(x, one_minus_half_denominator_times_x, size); \
x = x + ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(tmp, 2, size); \
} \
return ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(x, 1, size); \
}
/** Considering the integer value as fixed-point, change the number of integer bits and update value accordingly.
*
* @param[in] size Size of vector.
*
* @return Rescaled value.
*/
#define ASYMM_RESCALE_IMPL(size) \
inline VEC_DATA_TYPE(int, size) asymm_rescale##size(VEC_DATA_TYPE(int, size) value, int src_integer_bits, int dst_integer_bits) \
{ \
int exponent = src_integer_bits - dst_integer_bits; \
return ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(value, exponent, size); \
}
#define QUANTIZE_STR(input, offset, scale, type, size) quantize_##type##size(input, offset, scale)
#define QUANTIZE(input, offset, scale, type, size) QUANTIZE_STR(input, offset, scale, type, size)
#define DEQUANTIZE_STR(input, offset, scale, type, size) dequantize_##type##size(input, offset, scale)
#define DEQUANTIZE(input, offset, scale, type, size) DEQUANTIZE_STR(input, offset, scale, type, size)
#define ASYMM_ROUNDING_DIVIDE_BY_POW2_STR(x, exponent, size) asymm_rounding_divide_by_POW2_##size(x, exponent)
#define ASYMM_ROUNDING_DIVIDE_BY_POW2(x, exponent, size) ASYMM_ROUNDING_DIVIDE_BY_POW2_STR(x, exponent, size)
#define ASYMM_MULT_STR(a, b, size) asymm_mult##size(a, b)
#define ASYMM_MULT(a, b, size) ASYMM_MULT_STR(a, b, size)
#define ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(x, quantized_multiplier, left_shift, size) \
ASYMM_MULT(x *((VEC_DATA_TYPE(int, size))(1) << (-left_shift)), quantized_multiplier, size)
#define ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(x, quantized_multiplier, right_shift, size) \
ASYMM_ROUNDING_DIVIDE_BY_POW2(ASYMM_MULT(x, quantized_multiplier, size), right_shift, size)
#define ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL(a, size) asymm_exp_on_interval_between_negative_one_quarter_and_0_excl##size(a)
#define ASYMM_SELECT_USING_MASK(if_mask, then_val, else_val, size) asymm_select_using_mask##size(if_mask, then_val, else_val)
#define ASYMM_MASK_IF_ZERO(a, size) asymm_mask_if_zero##size(a)
#define ASYMM_MASK_IF_NON_ZERO(a, size) asymm_mask_if_non_zero##size(a)
#define EXP_BARREL_SHIFTER(result, exponent, fp_multiplier, k_integer_bits, k_fractional_bits, remainder, size) exp_barrel_shifter##size(result, exponent, fp_multiplier, k_integer_bits, k_fractional_bits, remainder)
#define ASYMM_EXP_ON_NEGATIVE_VALUES_STR(a, k_integer_bits, size) asymm_exp_on_negative_values##size(a, k_integer_bits)
#define ASYMM_EXP_ON_NEGATIVE_VALUES(a, k_integer_bits, size) ASYMM_EXP_ON_NEGATIVE_VALUES_STR(a, k_integer_bits, size)
#define ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_STR(a, size) asymm_one_over_one_plus_x_for_x_in_0_1##size(a)
#define ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1(a, size) ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_STR(a, size)
#define ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(x, exponent, size) asymm_saturating_rounding_mult_by_pow2##size(x, exponent)
#define ASYMM_ROUNDING_HALF_SUM(a, b, size) asymm_rounding_half_sum##size(a, b)
#define ASYMM_RESCALE_STR(value, src_integer_bits, dst_integer_bits, size) asymm_rescale##size(value, src_integer_bits, dst_integer_bits)
#define ASYMM_RESCALE(value, src_integer_bits, dst_integer_bits, size) ASYMM_RESCALE_STR(value, src_integer_bits, dst_integer_bits, size)
#define MULTIPLY_BY_QUANTIZED_MULTIPLIER_IMPL(size) \
inline VEC_DATA_TYPE(int, size) multiply_by_quantized_multiplier##size(VEC_DATA_TYPE(int, size) input, int qmul, int shift) \
{ \
const int left_shift = shift > 0 ? shift : 0; \
const int right_shift = shift > 0 ? 0 : -shift; \
return ASYMM_ROUNDING_DIVIDE_BY_POW2(ASYMM_MULT(input * (1 << left_shift), qmul, size), right_shift, size); \
}
#define MULTIPLY_BY_QUANTIZED_MULTIPLIER(input, qmul, shift, size) multiply_by_quantized_multiplier##size(input, qmul, shift)
QUANTIZE_IMPL(uchar, 1)
QUANTIZE_IMPL(char, 1)
QUANTIZE_IMPL(uint, 1)
QUANTIZE_IMPL(int, 1)
QUANTIZE_IMPL(uchar, 4)
QUANTIZE_IMPL(ushort, 4)
QUANTIZE_IMPL(short, 4)
QUANTIZE_IMPL(uchar, 16)
QUANTIZE_IMPL(char, 16)
QUANTIZE_IMPL(ushort, 16)
QUANTIZE_IMPL(short, 16)
QUANTIZE_IMPL(uint, 16)
QUANTIZE_IMPL(int, 16)
DEQUANTIZE_IMPL(uchar, 1)
DEQUANTIZE_IMPL(char, 1)
DEQUANTIZE_IMPL(uint, 1)
DEQUANTIZE_IMPL(int, 1)
DEQUANTIZE_IMPL(uchar, 4)
DEQUANTIZE_IMPL(ushort, 4)
DEQUANTIZE_IMPL(short, 4)
DEQUANTIZE_IMPL(uchar, 16)
DEQUANTIZE_IMPL(char, 16)
DEQUANTIZE_IMPL(ushort, 16)
DEQUANTIZE_IMPL(short, 16)
DEQUANTIZE_IMPL(uint, 16)
DEQUANTIZE_IMPL(int, 16)
ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(1)
ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(2)
ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(3)
ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(4)
ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(8)
ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(16)
ASYMM_MULT_IMPL(1)
ASYMM_MULT_IMPL(2)
ASYMM_MULT_IMPL(3)
ASYMM_MULT_IMPL(4)
ASYMM_MULT_IMPL(8)
ASYMM_MULT_IMPL(16)
ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(1)
ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(2)
ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(3)
ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(4)
ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(8)
ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(16)
ASYMM_SELECT_USING_MASK_IMPL(1)
ASYMM_SELECT_USING_MASK_IMPL(2)
ASYMM_SELECT_USING_MASK_IMPL(3)
ASYMM_SELECT_USING_MASK_IMPL(4)
ASYMM_SELECT_USING_MASK_IMPL(8)
ASYMM_SELECT_USING_MASK_IMPL(16)
ASYMM_MASK_IF_ZERO_IMPL(1)
ASYMM_MASK_IF_ZERO_IMPL(2)
ASYMM_MASK_IF_ZERO_IMPL(3)
ASYMM_MASK_IF_ZERO_IMPL(4)
ASYMM_MASK_IF_ZERO_IMPL(8)
ASYMM_MASK_IF_ZERO_IMPL(16)
ASYMM_MASK_IF_NON_ZERO_IMPL(1)
ASYMM_MASK_IF_NON_ZERO_IMPL(2)
ASYMM_MASK_IF_NON_ZERO_IMPL(3)
ASYMM_MASK_IF_NON_ZERO_IMPL(4)
ASYMM_MASK_IF_NON_ZERO_IMPL(8)
ASYMM_MASK_IF_NON_ZERO_IMPL(16)
EXP_BARREL_SHIFTER_IMPL(1)
EXP_BARREL_SHIFTER_IMPL(2)
EXP_BARREL_SHIFTER_IMPL(3)
EXP_BARREL_SHIFTER_IMPL(4)
EXP_BARREL_SHIFTER_IMPL(8)
EXP_BARREL_SHIFTER_IMPL(16)
ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(1)
ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(2)
ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(3)
ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(4)
ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(8)
ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(16)
ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(1)
ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(2)
ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(3)
ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(4)
ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(8)
ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(16)
ASYMM_ROUNDING_HALF_SUM_IMPL(1)
ASYMM_ROUNDING_HALF_SUM_IMPL(2)
ASYMM_ROUNDING_HALF_SUM_IMPL(3)
ASYMM_ROUNDING_HALF_SUM_IMPL(4)
ASYMM_ROUNDING_HALF_SUM_IMPL(8)
ASYMM_ROUNDING_HALF_SUM_IMPL(16)
ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(1)
ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(2)
ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(3)
ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(4)
ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(8)
ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(16)
ASYMM_RESCALE_IMPL(1)
ASYMM_RESCALE_IMPL(2)
ASYMM_RESCALE_IMPL(3)
ASYMM_RESCALE_IMPL(4)
ASYMM_RESCALE_IMPL(8)
ASYMM_RESCALE_IMPL(16)
MULTIPLY_BY_QUANTIZED_MULTIPLIER_IMPL(1)
MULTIPLY_BY_QUANTIZED_MULTIPLIER_IMPL(2)
MULTIPLY_BY_QUANTIZED_MULTIPLIER_IMPL(3)
MULTIPLY_BY_QUANTIZED_MULTIPLIER_IMPL(4)
MULTIPLY_BY_QUANTIZED_MULTIPLIER_IMPL(8)
MULTIPLY_BY_QUANTIZED_MULTIPLIER_IMPL(16)
#endif // ARM_COMPUTE_HELPERS_ASYMM_H