blob: d3965326cdf57117279ad3dcc898ef2b8e9af290 [file] [log] [blame]
/*
* Copyright (c) 2022-2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ACL_SRC_CPU_KERNELS_DIRECTCONV2D_IMPL_H
#define ACL_SRC_CPU_KERNELS_DIRECTCONV2D_IMPL_H
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/core/NEON/kernels/detail/NEDirectConvolutionDetail.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include <algorithm>
namespace arm_compute
{
namespace cpu
{
namespace kernels
{
template <typename T, bool has_pads>
void linearize_volume_nchw(const uint8_t *const in_ptr,
T *out_ptr,
bool has_bias,
int top_left_x,
int top_left_y,
int kernel_width,
int kernel_height,
int kernel_depth,
int input_w,
int input_h,
int input_stride_x,
int input_stride_y,
int input_stride_z,
int pad_value,
int dilation_x,
int dilation_y)
{
const int kernel_size2 = kernel_width * kernel_height;
const int x_e = top_left_x + kernel_width * dilation_x;
const int y_e = top_left_y + kernel_height * dilation_y;
// Linearize volume
int d = 0;
// This for loop linearize a volume with 3 slices. This allows:
// 1) to reduce the iterations of the outer for loop "d"
// 2) to have an optimized im2col for the first convolution layer where usually we have 3 IFMs
for (; d <= (kernel_depth - 3); d += 3)
{
for (int y = top_left_y; y < y_e; y += dilation_y)
{
if ((y < 0 || y >= input_h) && has_pads)
{
// All the values will be the offset (will be zeros when not quantized)
for (int x = top_left_x; x < x_e; x += dilation_x, ++out_ptr)
{
*(out_ptr + 0 * kernel_size2) = pad_value;
*(out_ptr + 1 * kernel_size2) = pad_value;
*(out_ptr + 2 * kernel_size2) = pad_value;
}
}
else
{
for (int x = top_left_x; x < x_e; x += dilation_x, ++out_ptr)
{
if ((x < 0 || x >= input_w) && has_pads)
{
*(out_ptr + 0 * kernel_size2) = pad_value;
*(out_ptr + 1 * kernel_size2) = pad_value;
*(out_ptr + 2 * kernel_size2) = pad_value;
}
else
{
*(out_ptr + 0 * kernel_size2) = *(reinterpret_cast<const T *>(
in_ptr + ((d + 0) * input_stride_z + y * input_stride_y + x * input_stride_x)));
*(out_ptr + 1 * kernel_size2) = *(reinterpret_cast<const T *>(
in_ptr + ((d + 1) * input_stride_z + y * input_stride_y + x * input_stride_x)));
*(out_ptr + 2 * kernel_size2) = *(reinterpret_cast<const T *>(
in_ptr + ((d + 2) * input_stride_z + y * input_stride_y + x * input_stride_x)));
}
}
}
}
out_ptr += 2 * kernel_size2;
}
// Left over
for (; d < kernel_depth; d++)
{
for (int y = top_left_y; y < y_e; y += dilation_y)
{
if ((y < 0 || y >= input_h) && has_pads)
{
// All the values will be the offset (will be zeros when not quantized)
memset(static_cast<void *>(out_ptr), pad_value, kernel_width * sizeof(T));
out_ptr += kernel_width;
}
else
{
for (int x = top_left_x; x < x_e; x += dilation_x, ++out_ptr)
{
if ((x < 0 || x >= input_w) && has_pads)
{
*out_ptr = pad_value;
}
else
{
*out_ptr = *(reinterpret_cast<const T *>(
in_ptr + (d * input_stride_z + y * input_stride_y + x * input_stride_x)));
}
}
}
}
}
// Append 1 if the convolution layer has biases
if (has_bias)
{
*out_ptr = static_cast<T>(1);
}
}
template <typename T, bool has_pads>
void linearize_volume_nhwc(const uint8_t *const in_ptr,
T *out_ptr,
bool has_bias,
int start_x,
int start_y,
int kernel_width,
int kernel_height,
int input_w,
int input_h,
int input_c,
int input_stride_y,
int input_stride_z,
int pad_value,
int dilation_x,
int dilation_y)
{
const int end_x = start_x + kernel_width * dilation_x;
const int end_y = start_y + kernel_height * dilation_y;
const int pad_quant = kernel_width * input_c;
const int element_size = static_cast<int>(sizeof(T));
if ((start_y >= 0) && (end_y < input_h) && (start_x >= 0) && (end_x < input_w) && (dilation_x == 1) &&
(input_stride_y == input_c * element_size))
{
for (int y = start_y; y < end_y; y += dilation_y)
{
//optimized for no dilation and no boundary pixels
memcpy(out_ptr, reinterpret_cast<const T *>(in_ptr + (y * input_stride_z + start_x * input_stride_y)),
input_c * kernel_width * element_size);
out_ptr += input_c * kernel_width;
}
}
else
{
for (int y = start_y; y < end_y; y += dilation_y)
{
if (y < 0 || y >= input_h)
{
memset(static_cast<void *>(out_ptr), pad_value, pad_quant * element_size);
out_ptr += pad_quant;
}
else if (dilation_x > 1 || start_x < 0 || end_x >= input_w || input_stride_y != input_c * element_size)
{
for (int x = start_x; x < end_x; x += dilation_x)
{
if (x < 0 || x >= input_w)
{
memset(static_cast<void *>(out_ptr), pad_value, input_c * element_size);
out_ptr += input_c;
}
else
{
memcpy(out_ptr, reinterpret_cast<const T *>(in_ptr + (y * input_stride_z + x * input_stride_y)),
input_c * element_size);
out_ptr += input_c;
}
}
}
else
{
//optimized for no dilation and no boundary pixels
memcpy(out_ptr, reinterpret_cast<const T *>(in_ptr + (y * input_stride_z + start_x * input_stride_y)),
input_c * kernel_width * element_size);
out_ptr += input_c * kernel_width;
}
}
}
// Append 1 if the convolution layer has biases
if (has_bias)
{
*out_ptr = static_cast<T>(1);
}
}
template <typename T, bool has_pads>
void linearize_volume_nhwc(const uint8_t *const in_ptr,
T *out_ptr,
bool has_bias,
int start_x,
int start_y,
int kernel_width,
int kernel_height,
int input_w,
int input_h,
int input_c,
int input_stride_y,
int input_stride_z,
int pad_value,
int dilation_x,
int dilation_y,
int pad_right)
{
const int end_x = start_x + kernel_width * dilation_x;
const int end_y = start_y + kernel_height * dilation_y;
const int pad_quant = kernel_width * (input_c + pad_right);
const int element_size = static_cast<int>(sizeof(T));
const int channel_chunk_size = input_c * element_size;
if ((start_y >= 0) && (end_y < input_h) && (start_x >= 0) && (end_x < input_w) && (dilation_x == 1) &&
(input_stride_y == channel_chunk_size))
{
for (int y = start_y; y < end_y; y += dilation_y)
{
const uint8_t *offset_ptr = in_ptr + (y * input_stride_z + start_x * input_stride_y);
for (int e = 0; e < kernel_width; e++)
{
memcpy(out_ptr, reinterpret_cast<const T *>(offset_ptr + e * channel_chunk_size), channel_chunk_size);
out_ptr += input_c + pad_right;
}
}
}
else
{
for (int y = start_y; y < end_y; y += dilation_y)
{
if (y < 0 || y >= input_h)
{
memset(static_cast<void *>(out_ptr), pad_value, pad_quant * element_size);
out_ptr += pad_quant;
}
else if (dilation_x > 1 || start_x < 0 || end_x >= input_w || input_stride_y != channel_chunk_size)
{
for (int x = start_x; x < end_x; x += dilation_x)
{
if (x < 0 || x >= input_w)
{
memset(static_cast<void *>(out_ptr), pad_value, (input_c + pad_right) * element_size);
out_ptr += input_c + pad_right;
}
else
{
memcpy(out_ptr, reinterpret_cast<const T *>(in_ptr + (y * input_stride_z + x * input_stride_y)),
channel_chunk_size);
out_ptr += input_c + pad_right;
}
}
}
else
{
const uint8_t *offset_ptr = in_ptr + (y * input_stride_z + start_x * input_stride_y);
for (int e = 0; e < kernel_width; e++)
{
memcpy(out_ptr, reinterpret_cast<const T *>(offset_ptr + e * channel_chunk_size),
channel_chunk_size);
out_ptr += input_c + pad_right;
}
}
}
}
// Append 1 if the convolution layer has biases
if (has_bias)
{
*out_ptr = static_cast<T>(1);
}
}
template <typename T, bool has_pads, bool is_nchw>
void run_im2col(const ITensor *src,
ITensor *dst,
const Window &window,
DataLayout data_layout,
const PadStrideInfo &conv_info,
std::pair<unsigned int, unsigned int> convolved_dims,
const Size2D &kernel_dims,
const Size2D &dilation,
uint32_t input_pad_right,
bool has_bias)
{
const unsigned int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const unsigned int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
const unsigned int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
const int input_w = src->info()->dimension(width_idx);
const int input_h = src->info()->dimension(height_idx);
const int input_c = src->info()->dimension(channel_idx);
const int input_stride_x = src->info()->strides_in_bytes().x();
const int input_stride_y = src->info()->strides_in_bytes().y();
const int input_stride_z = src->info()->strides_in_bytes().z();
const int pad_left = conv_info.pad_left();
const int pad_top = conv_info.pad_top();
const int stride_x = conv_info.stride().first;
const int stride_y = conv_info.stride().second;
const int pad_value =
is_data_type_quantized(src->info()->data_type()) ? src->info()->quantization_info().uniform().offset : 0;
const auto kernel_width = kernel_dims.width;
const auto kernel_height = kernel_dims.height;
Window window_in_out(window);
// The first three dimensions of the input and output are increased by the inner loops
window_in_out.set(Window::DimX, Window::Dimension(0, 0, 0));
window_in_out.set(Window::DimY, Window::Dimension(0, 0, 0));
window_in_out.set(Window::DimZ, Window::Dimension(0, 0, 0));
// Create iterators
Iterator in(src, window_in_out);
Iterator out(dst, window_in_out);
execute_window_loop(
window,
[&](const Coordinates &id)
{
const int start_w = id[width_idx] * stride_x - pad_left;
const int start_h = id[height_idx] * stride_y - pad_top;
// Get pointers
const uint8_t *const input_ptr = in.ptr();
auto output_ptr =
reinterpret_cast<T *>(out.ptr() + (id[width_idx] + id[height_idx] * convolved_dims.first) *
dst->info()->strides_in_bytes().y());
// Linearize volume
if (is_nchw)
{
linearize_volume_nchw<T, has_pads>(
input_ptr, output_ptr, has_bias, start_w, start_h, kernel_width, kernel_height, input_c, input_w,
input_h, input_stride_x, input_stride_y, input_stride_z, pad_value, dilation.x(), dilation.y());
}
else
{
if (input_pad_right > 0)
{
linearize_volume_nhwc<T, has_pads>(input_ptr, output_ptr, has_bias, start_w, start_h, kernel_width,
kernel_height, input_w, input_h, input_c, input_stride_y,
input_stride_z, pad_value, dilation.x(), dilation.y(),
input_pad_right);
}
else
{
linearize_volume_nhwc<T, has_pads>(input_ptr, output_ptr, has_bias, start_w, start_h, kernel_width,
kernel_height, input_w, input_h, input_c, input_stride_y,
input_stride_z, pad_value, dilation.x(), dilation.y());
}
}
},
in, out);
}
} // namespace kernels
} // namespace cpu
} // namespace arm_compute
#endif // ACL_SRC_CPU_KERNELS_DIRECTCONV2D_IMPL_H