blob: 5a4bb9ff4ce2c46ea16badf52ad8a8149e31609f [file] [log] [blame]
/*
* Copyright (c) 2016-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#if FLOAT_DATA_TYPE
#define ISGREATER(x, y) isgreater(x, y)
#define ISLESS(x, y) isless(x, y)
#else // !FLOAT_DATA_TYPE
#if defined(WIDTH)
#define ISGREATER(x, y) (x > y) ? 1 : 0
#define ISLESS(x, y) (x < y) ? 1 : 0
#else // !defined(WIDTH)
#define ISGREATER(x, y) select((int16)0, (int16)-1, x > y)
#define ISLESS(x, y) select((int16)0, (int16)-1, x < y)
#endif // defined(WIDTH)
#endif // FLOAT_DATA_TYPE
/** Calculate square sum of a vector
*
* @param[in] input Pointer to the first pixel.
*
* @return square sum of vector.
*/
inline DATA_TYPE square_sum(__global const DATA_TYPE *input)
{
VEC_DATA_TYPE(DATA_TYPE, 16)
in = vload16(0, input);
in *= in;
in.s01234567 += in.s89ABCDEF;
in.s0123 += in.s4567;
in.s01 += in.s23;
return (in.s0 + in.s1);
}
/** Calculate sum of a vector
*
* @param[in] input Pointer to the first pixel.
*
* @return sum of vector.
*/
inline DATA_TYPE sum(__global const DATA_TYPE *input)
{
VEC_DATA_TYPE(DATA_TYPE, 16)
in = vload16(0, input);
in.s01234567 += in.s89ABCDEF;
in.s0123 += in.s4567;
in.s01 += in.s23;
return (in.s0 + in.s1);
}
/** Calculate product of a vector
*
* @param[in] input Pointer to the first pixel.
*
* @return product of vector.
*/
inline DATA_TYPE product(__global const DATA_TYPE *input)
{
VEC_DATA_TYPE(DATA_TYPE, 16)
in = vload16(0, input);
in.s01234567 *= in.s89ABCDEF;
in.s0123 *= in.s4567;
in.s01 *= in.s23;
return (in.s0 * in.s1);
}
#if defined(OPERATION)
/** This kernel performs parallel reduction given an operation on x-axis.
*
* @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note The operation we want to perform must be passed at compile time using -DOPERATION e.g. -DOPERATION=square_sum
* @note The mean flag must be passed at compile time using -DMEAN if we want to compute the mean value
* @note The product flag must be passed at compile time using -DPROD if we want to compute the product, otherwise sum will be used
* @note The width size must be passed at compile time using -DWIDTH e.g. -DWIDTH=128 if we want to compute the mean value
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] partial_res_ptr The local buffer to hold partial result values. Supported data types: same as @p src_ptr
* @param[in] partial_res_stride_x Stride of the output tensor in X dimension (in bytes)
* @param[in] partial_res_step_x partial_res_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] partial_res_stride_y Stride of the output tensor in Y dimension (in bytes)
* @param[in] partial_res_step_y partial_res_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] partial_res_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] local_results Local buffer for storing the partial result
*/
__kernel void reduction_operation_x(
IMAGE_DECLARATION(src),
IMAGE_DECLARATION(partial_res),
__local DATA_TYPE *local_results)
{
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Image partial_res = CONVERT_TO_IMAGE_STRUCT(partial_res);
unsigned int lsize = get_local_size(0);
unsigned int lid = get_local_id(0);
for(unsigned int y = 0; y < get_local_size(1); ++y)
{
local_results[lid] = OPERATION((__global DATA_TYPE *)offset(&src, 0, y));
barrier(CLK_LOCAL_MEM_FENCE);
// Perform parallel reduction
for(unsigned int i = lsize >> 1; i > 0; i >>= 1)
{
if(lid < i)
{
#if defined(PROD)
local_results[lid] *= local_results[lid + i];
#else // !defined(PROD)
local_results[lid] += local_results[lid + i];
#endif // defined(PROD)
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(lid == 0)
{
#if defined(MEAN) && defined(WIDTH)
if(y == get_local_size(1) - 1)
{
local_results[0] /= WIDTH;
}
#endif // defined(MEAN) && defined(WIDTH)
((__global DATA_TYPE *)offset(&partial_res, get_group_id(0), y))[0] = local_results[0];
}
}
}
#endif // defined(OPERATION)
#if defined(WIDTH)
/** This kernel performs reduction on x-axis. (Non parallel)
*
* @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note The width size must be passed at compile time using -DWIDTH e.g. -DWIDTH=128
* @note The product flag must be passed at compile time using -DPROD if we want to compute the product, otherwise sum will be used
* @note In case of ARG_MIN and ARG_MAX the condition data type must be passed at compile time using -DCOND_DATA_TYPE e.g. -DCOND_DATA_TYPE=short
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: S32/F16/F32 and QASYMM8 for operation MEAN
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] output_ptr The local buffer to hold sumed values. Supported data types: same as @p src_ptt
* @param[in] output_stride_x Stride of the output tensor in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor
*/
__kernel void reduction_operation_non_parallel_x(
VECTOR_DECLARATION(src),
VECTOR_DECLARATION(output))
{
Vector src = CONVERT_TO_VECTOR_STRUCT(src);
Vector output = CONVERT_TO_VECTOR_STRUCT(output);
DATA_TYPE_PROMOTED res = *((__global DATA_TYPE *)vector_offset(&src, 0));
#if defined(ARG_MAX) || defined(ARG_MIN)
uint indx = 0;
#endif // defined(ARG_MAX) || defined(ARG_MIN)
for(unsigned int x = 1; x < WIDTH; ++x)
{
DATA_TYPE_PROMOTED in = *((__global DATA_TYPE *)vector_offset(&src, x));
#if defined(ARG_MAX)
indx = select(indx, x, ISGREATER(in, res));
res = select(res, in, CONVERT(ISGREATER(in, res), COND_DATA_TYPE));
#elif defined(ARG_MIN)
indx = select(indx, x, ISLESS(in, res));
res = select(res, in, CONVERT(ISLESS(in, res), COND_DATA_TYPE));
#elif defined(MIN)
res = select(res, in, CONVERT(ISLESS(in, res), COND_DATA_TYPE));
#elif defined(MAX)
res = select(res, in, CONVERT(ISGREATER(in, res), COND_DATA_TYPE));
#else // !(defined(ARG_MAX) || defined(ARG_MIN))
res += in;
#endif // defined(ARG_MAX) || defined(ARG_MIN)
}
// Store result
#if defined(ARG_MAX) || defined(ARG_MIN)
*((__global uint *)output.ptr) = indx;
#else // !(defined(ARG_MAX) || defined(ARG_MIN))
#if defined(MEAN)
res /= WIDTH;
#endif // defined(MEAN)
#if defined(MIN) || defined(MAX)
*((__global DATA_TYPE_PROMOTED *)output.ptr) = res;
#else // defined(MIN) || defined(MAX)
*((__global uchar *)output.ptr) = convert_uchar(res);
#endif // defined(MIN) || defined(MAX)
#endif // defined(ARG_MAX) || defined(ARG_MIN)
}
#endif // defined(WIDTH)
#if defined(HEIGHT)
/** This kernel performs reduction on y-axis.
*
* @note The input data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note The height size must be passed at compile time using -DHEIGHT e.g. -DHEIGHT=128
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8/S32/F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] output_ptr The local buffer to hold sumed values. Supported data types: same as @p src_ptt
* @param[in] output_stride_x Stride of the output tensor in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y Stride of the output tensor in Y dimension (in bytes)
* @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor
*/
__kernel void reduction_operation_y(
IMAGE_DECLARATION(src),
IMAGE_DECLARATION(output))
{
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Image output = CONVERT_TO_IMAGE_STRUCT(output);
VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 16)
res = CONVERT(vload16(0, (__global DATA_TYPE *)offset(&src, 0, 0)), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 16));
#if defined(SUM_SQUARE)
res *= res;
#endif // defined(SUM_SQUARE)
#if defined(ARG_MAX) || defined(ARG_MIN)
uint16 indx = 0;
#endif // defined(ARG_MAX) || defined(ARG_MIN)
for(unsigned int y = 1; y < HEIGHT; ++y)
{
VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 16)
in = CONVERT(vload16(0, (__global DATA_TYPE *)offset(&src, 0, y)), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 16));
#if defined(ARG_MAX)
uint16 cond_conv = CONVERT(ISGREATER(in, res), uint16);
indx = select(indx, y, cond_conv);
res = select(res, in, ISGREATER(in, res));
#elif defined(ARG_MIN)
uint16 cond_conv = CONVERT(ISLESS(in, res), uint16);
indx = select(indx, y, cond_conv);
res = select(res, in, ISLESS(in, res));
#elif defined(MIN)
res = select(res, in, ISLESS(in, res));
#elif defined(MAX)
res = select(res, in, ISGREATER(in, res));
#else // !(defined(ARG_MAX) || defined(ARG_MIN))
#if defined(SUM_SQUARE)
in *= in;
#endif // defined(SUM_SQUARE)
#if defined(PROD)
res *= in;
#else // !defined(PROD)
res += in;
#endif // defined(PROD)
#endif // defined(ARG_MAX) || defined(ARG_MIN)
}
// Store result
#if defined(ARG_MAX) || defined(ARG_MIN)
vstore16(indx, 0, (__global uint *)output.ptr);
#else // !(defined(ARG_MAX) || defined(ARG_MIN))
#if defined(MEAN)
res /= HEIGHT;
#endif // defined(MEAN)
vstore16(CONVERT(res, VEC_DATA_TYPE(DATA_TYPE, 16)), 0, (__global DATA_TYPE *)output.ptr);
#endif // defined(ARG_MAX) || defined(ARG_MIN)
}
#endif // defined(HEIGHT)
#if defined(DEPTH)
/** This kernel performs reduction on z-axis.
*
* @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note The depth size must be passed at compile time using -DDEPTH e.g. -DDEPTH=128
*
* @param[in] input_ptr Pointer to the source tensor. Supported data types: QASYMM8/S32/F16/F32
* @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] output_ptr The local buffer to hold sumed values. Supported data types: same as @p input_ptt
* @param[in] output_stride_x Stride of the output tensor in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y Stride of the output tensor in Y dimension (in bytes)
* @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z Stride of the output tensor in Z dimension (in bytes)
* @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor
*/
__kernel void reduction_operation_z(
TENSOR3D_DECLARATION(input),
TENSOR3D_DECLARATION(output))
{
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 16)
res = CONVERT(vload16(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0)), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 16));
#if defined(COMPLEX)
VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 16)
res1 = CONVERT(vload16(0, (__global DATA_TYPE *)tensor3D_offset(&input, 8, 0, 0)), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 16));
#endif // defined(COMPLEX)
#if defined(SUM_SQUARE)
res *= res;
#endif // defined(SUM_SQUARE)
#if defined(ARG_MAX) || defined(ARG_MIN)
uint16 indx = 0;
#endif // defined(ARG_MAX) || defined(ARG_MIN)
for(unsigned int z = 1; z < DEPTH; ++z)
{
VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 16)
in = CONVERT(vload16(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, z)), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 16));
#if defined(COMPLEX)
VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 16)
in1 = CONVERT(vload16(0, (__global DATA_TYPE *)tensor3D_offset(&input, 8, 0, z)), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 16));
#endif // defined(COMPLEX)
#if defined(ARG_MAX)
uint16 cond_conv = CONVERT(ISGREATER(in, res), uint16);
indx = select(indx, z, cond_conv);
res = select(res, in, ISGREATER(in, res));
#elif defined(ARG_MIN)
uint16 cond_conv = CONVERT(ISLESS(in, res), uint16);
indx = select(indx, z, cond_conv);
res = select(res, in, ISLESS(in, res));
#elif defined(MIN)
res = select(res, in, ISLESS(in, res));
#elif defined(MAX)
res = select(res, in, ISGREATER(in, res));
#else // !(defined(ARG_MAX) || defined(ARG_MIN))
#if defined(SUM_SQUARE)
in *= in;
#endif // defined(SUM_SQUARE)
#if defined(PROD)
res *= in;
#else //!defined(PROD)
res += in;
#if defined(COMPLEX)
res1 += in1;
#endif // defined(COMPLEX)
#endif //defined(PROD)
#endif // defined(ARG_MAX) || defined(ARG_MIN)
}
// Store result
#if defined(ARG_MAX) || defined(ARG_MIN)
vstore16(indx, 0, (__global uint *)output.ptr);
#else // !(defined(ARG_MAX) || defined(ARG_MIN))
#if defined(MEAN)
res /= DEPTH;
#endif // defined(MEAN)
vstore16(CONVERT(res, VEC_DATA_TYPE(DATA_TYPE, 16)), 0, (__global DATA_TYPE *)output.ptr);
#if defined(COMPLEX)
vstore16(CONVERT(res1, VEC_DATA_TYPE(DATA_TYPE, 16)), 0, (__global DATA_TYPE *)tensor3D_offset(&output, 8, 0, 0));
#endif // defined(COMPLEX)
#endif // defined(ARG_MAX) || defined(ARG_MIN)
}
#endif /* defined(DEPTH) */
#if defined(BATCH) && defined(DEPTH)
/** This kernel performs reduction on w-axis.
*
* @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note The batch size must be passed at compile time using -DBATCH e.g. -DBATCH=128
* @note The depth size must be passed at compile time using -DBATCH e.g. -DDEPTH=128
*
* @param[in] input_ptr Pointer to the source tensor. Supported data types: QASYMM8/S32/F16/F32
* @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes)
* @param[in] input_step_w input_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] output_ptr The local buffer to hold sumed values. Supported data types: same as @p input_ptt
* @param[in] output_stride_x Stride of the output tensor in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y Stride of the output tensor in Y dimension (in bytes)
* @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z Stride of the output tensor in Z dimension (in bytes)
* @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_stride_w Stride of the output tensor in W dimension (in bytes)
* @param[in] output_step_w output_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor
*/
__kernel void reduction_operation_w(
TENSOR4D_DECLARATION(input),
TENSOR4D_DECLARATION(output))
{
Tensor4D input = CONVERT_TO_TENSOR4D_STRUCT(input, DEPTH);
Tensor4D output = CONVERT_TO_TENSOR4D_STRUCT(output, DEPTH);
VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 16)
res = CONVERT(vload16(0, (__global DATA_TYPE *)tensor4D_offset(&input, 0, 0, 0, 0)), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 16));
#if defined(SUM_SQUARE)
res *= res;
#endif // defined(SUM_SQUARE)
#if defined(ARG_MAX) || defined(ARG_MIN)
uint16 indx = 0;
#endif // defined(ARG_MAX) || defined(ARG_MIN)
for(unsigned int w = 1; w < BATCH; ++w)
{
VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 16)
in = CONVERT(vload16(0, (__global DATA_TYPE *)tensor4D_offset(&input, 0, 0, 0, w)), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 16));
#if defined(ARG_MAX)
uint16 cond_conv = CONVERT(ISGREATER(in, res), uint16);
indx = select(indx, w, cond_conv);
res = select(res, in, ISGREATER(in, res));
#elif defined(ARG_MIN)
uint16 cond_conv = CONVERT(ISLESS(in, res), uint16);
indx = select(indx, w, cond_conv);
res = select(res, in, ISLESS(in, res));
#elif defined(MIN)
res = select(res, in, ISLESS(in, res));
#elif defined(MAX)
res = select(res, in, ISGREATER(in, res));
#else // !(defined(ARG_MAX) || defined(ARG_MIN))
#if defined(SUM_SQUARE)
in *= in;
#endif // defined(SUM_SQUARE)
#if defined(PROD)
res *= in;
#else //!defined(PROD)
res += in;
#endif //defined(PROD)
#endif // defined(ARG_MAX) || defined(ARG_MIN)
}
// Store result
#if defined(ARG_MAX) || defined(ARG_MIN)
vstore16(indx, 0, (__global uint *)output.ptr);
#else // !(defined(ARG_MAX) || defined(ARG_MIN))
#if defined(MEAN)
res /= BATCH;
#endif // defined(MEAN)
vstore16(CONVERT(res, VEC_DATA_TYPE(DATA_TYPE, 16)), 0, (__global DATA_TYPE *)output.ptr);
#endif // defined(ARG_MAX) || defined(ARG_MIN)
}
#endif /* defined(BATCH) && defined(DEPTH) */