blob: 86ccddac884c957973fd88fd48f9cd6da2e942df [file] [log] [blame]
/*
* Copyright (c) 2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/functions/CLWinogradConvolutionLayer.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
using namespace arm_compute;
CLWinogradConvolutionLayer::CLWinogradConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(memory_manager), _batched_mm(memory_manager), _input_transform(), _filter_transform(), _output_transform(), _activationlayer_function(), _input0(), _input1(), _batched_mm_output(),
_is_first_run(true), _is_activationlayer_enabled(false)
{
}
void CLWinogradConvolutionLayer::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info)
{
// Get indices for the width and height
const size_t idx_width = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH);
const size_t idx_height = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT);
// Input shape
const TensorShape input_shape = input->info()->tensor_shape();
const unsigned int input_w = input->info()->tensor_shape()[idx_width];
const unsigned int input_h = input->info()->tensor_shape()[idx_height];
// Kernel size
const unsigned int kernel_w = weights->info()->tensor_shape()[idx_width];
const unsigned int kernel_h = weights->info()->tensor_shape()[idx_height];
//Winograd output tile
const Size2D output_tile = (Size2D(kernel_w, kernel_h) == Size2D(3U, 3U) && input_w <= 4 && input_h <= 4) ? Size2D(2U, 2U) : Size2D(4U, 4U);
const WinogradInfo winograd_info = WinogradInfo(output_tile,
Size2D(kernel_w, kernel_h),
Size2D(input_shape[idx_width], input_shape[idx_height]),
conv_info,
input->info()->data_layout());
// Manage intermediate tensors
_memory_group.manage(&_input0);
_memory_group.manage(&_batched_mm_output);
// Do not manage _input1 as it contains the weights
// Configure input transform
_input_transform.configure(input, &_input0, winograd_info);
// Configure filter transform
_filter_transform.configure(weights, &_input1, winograd_info);
// Configure batched matrix multiply
_batched_mm.configure(&_input0, &_input1, nullptr, &_batched_mm_output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/));
// Configure output transform
_output_transform.configure(&_batched_mm_output, biases, output, winograd_info);
// Configure activation layer
_is_activationlayer_enabled = act_info.enabled();
if(_is_activationlayer_enabled)
{
_activationlayer_function.configure(output, nullptr, act_info);
}
// Allocate temporary tensors
_input0.allocator()->allocate();
_input1.allocator()->allocate();
_batched_mm_output.allocator()->allocate();
}
Status CLWinogradConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
const ActivationLayerInfo &act_info)
{
// Get indeces for the width and height
const size_t idx_width = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
const size_t idx_height = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);
// Input shape
const TensorShape input_shape = input->tensor_shape();
const unsigned int input_w = input->tensor_shape()[idx_width];
const unsigned int input_h = input->tensor_shape()[idx_height];
// Kernel size
const unsigned int kernel_w = weights->tensor_shape()[idx_width];
const unsigned int kernel_h = weights->tensor_shape()[idx_height];
//Winograd output tile
const Size2D output_tile = (Size2D(kernel_w, kernel_h) == Size2D(3U, 3U) && input_w <= 4 && input_h <= 4) ? Size2D(2U, 2U) : Size2D(4U, 4U);
const WinogradInfo winograd_info = WinogradInfo(output_tile,
Size2D(kernel_w, kernel_h),
Size2D(input_shape[idx_width], input_shape[idx_height]),
conv_info,
input->data_layout());
// Validate input transform
const TensorShape input0_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*input, winograd_info);
const TensorInfo input0 = input->clone()->set_tensor_shape(input0_shape);
ARM_COMPUTE_RETURN_ON_ERROR(CLWinogradInputTransform::validate(input, &input0, winograd_info));
// Validate filter transform
const TensorShape input1_shape = misc::shape_calculator::compute_winograd_filter_transform_shape(*weights, winograd_info);
const TensorInfo input1 = weights->clone()->set_tensor_shape(input1_shape);
ARM_COMPUTE_RETURN_ON_ERROR(CLWinogradFilterTransformKernel::validate(weights, &input1, winograd_info));
// Validate batched matrix multiply
TensorShape batched_mm_output_shape = input0.tensor_shape();
batched_mm_output_shape[0] = input1.tensor_shape()[0];
const TensorInfo batched_mm_output = input0.clone()->set_tensor_shape(batched_mm_output_shape);
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMM::validate(&input0, &input1, nullptr, &batched_mm_output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/)));
// Configure output transform
ARM_COMPUTE_RETURN_ON_ERROR(CLWinogradOutputTransformKernel::validate(&batched_mm_output, biases, output, winograd_info));
// Validate Activation Layer
if(act_info.enabled())
{
CLActivationLayer::validate(output, nullptr, act_info);
}
return Status{};
}
void CLWinogradConvolutionLayer::run()
{
if(_is_first_run)
{
// Run filter transform
CLScheduler::get().enqueue(_filter_transform, false);
_is_first_run = false;
}
_memory_group.acquire();
// Run input transform
_input_transform.run();
// Run batched matrix multiplication
_batched_mm.run();
// Run output transform
CLScheduler::get().enqueue(_output_transform);
if(_is_activationlayer_enabled)
{
_activationlayer_function.run();
}
_memory_group.release();
}