blob: d57e6f15a9b42fcd89ed1d6e3982ef8bcea16c34 [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "NormalizationLayer.h"
#include "arm_compute/core/Types.h"
namespace arm_compute
{
namespace test
{
namespace validation
{
namespace reference
{
template <typename T>
SimpleTensor<T> normalization_layer(const SimpleTensor<T> &src, NormalizationLayerInfo info)
{
// Create reference
SimpleTensor<T> dst{ src.shape(), src.data_type(), 1 };
// Compute reference
const uint32_t norm_size = info.norm_size();
NormType type = info.type();
float beta = info.beta();
uint32_t kappa = info.kappa();
const int cols = src.shape()[0];
const int rows = src.shape()[1];
const int depth = src.shape()[2];
int upper_dims = src.shape().total_size() / (cols * rows);
float coeff = info.scale_coeff();
int radius_cols = norm_size / 2;
// IN_MAP_1D and CROSS_MAP normalize over a single axis only
int radius_rows = (NormType::IN_MAP_2D == type) ? norm_size / 2 : 0;
if(info.is_cross_map())
{
// Remove also depth from upper dimensions since it is the dimension we
// want to use for normalization
upper_dims /= depth;
for(int r = 0; r < upper_dims; ++r)
{
for(int i = 0; i < rows; ++i)
{
for(int k = 0; k < cols; ++k)
{
for(int l = 0; l < depth; ++l)
{
float accumulated_scale = 0.f;
for(int j = -radius_cols; j <= radius_cols; ++j)
{
const int z = l + j;
if(z >= 0 && z < depth)
{
const T value = src[k + i * cols + z * rows * cols + r * cols * rows * depth];
accumulated_scale += value * value;
}
}
dst[k + i * cols + l * rows * cols + r * cols * rows * depth] = kappa + accumulated_scale * coeff;
}
}
}
}
}
else
{
for(int r = 0; r < upper_dims; ++r)
{
for(int i = 0; i < rows; ++i)
{
for(int k = 0; k < cols; ++k)
{
float accumulated_scale = 0.f;
for(int j = -radius_rows; j <= radius_rows; ++j)
{
const int y = i + j;
for(int l = -radius_cols; l <= radius_cols; ++l)
{
const int x = k + l;
if((x >= 0 && y >= 0) && (x < cols && y < rows))
{
const T value = src[x + y * cols + r * cols * rows];
accumulated_scale += value * value;
}
}
}
dst[k + i * cols + r * cols * rows] = kappa + accumulated_scale * coeff;
}
}
}
}
if(beta == 1.f)
{
for(int i = 0; i < dst.num_elements(); ++i)
{
dst[i] = src[i] / dst[i];
}
}
else if(beta == 0.5f)
{
for(int i = 0; i < dst.num_elements(); ++i)
{
dst[i] = src[i] / std::sqrt(dst[i]);
}
}
else
{
for(int i = 0; i < dst.num_elements(); ++i)
{
dst[i] = src[i] * std::exp(std::log(dst[i]) * -beta);
}
}
return dst;
}
template SimpleTensor<float> normalization_layer(const SimpleTensor<float> &src, NormalizationLayerInfo info);
template SimpleTensor<half> normalization_layer(const SimpleTensor<half> &src, NormalizationLayerInfo info);
} // namespace reference
} // namespace validation
} // namespace test
} // namespace arm_compute