blob: 536ad2cd170c8e609f23cb7f1245758b2c20585d [file] [log] [blame]
/*
* Copyright (c) 2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/NEON/kernels/scale/impl/NEON/list.h"
namespace arm_compute
{
namespace
{
void qasymm8_neon_scale_bilinear(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy,
BorderMode border_mode, PixelValue constant_border_value, float sampling_offset,
bool align_corners, const Window &window)
{
// Get data layout and width/height indices
const DataLayout data_layout = src->info()->data_layout();
const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
// Compute the ratio between source height and destination height
const auto hr = scale_utils::calculate_resize_ratio(src->info()->dimension(idx_height), dst->info()->dimension(idx_height), align_corners);
Window win_off;
win_off.set(Window::DimX, Window::Dimension(0, 0, 0));
win_off.set(Window::DimY, Window::Dimension(0, 0, 0));
// Don't increment in X and Y direction for the input tensor
// A pointer to the start of this plane is needed as base for the precomputed offsets
Window win_in(window);
win_in.set(idx_width, Window::Dimension(0, 0, 0));
win_in.set(idx_height, Window::Dimension(0, 0, 0));
for(size_t d = Window::DimZ; d < offsets->info()->num_dimensions(); ++d)
{
win_off.set(d, Window::Dimension(0, 0, 0));
}
Iterator in(src, win_in);
Iterator out(dst, window);
const int32_t in_dim_w = src->info()->dimension(idx_width);
const int32_t in_dim_h = src->info()->dimension(idx_height);
const int32_t stride_w = src->info()->strides_in_bytes()[idx_width];
const int32_t stride_h = src->info()->strides_in_bytes()[idx_height];
const UniformQuantizationInfo iq_info = src->info()->quantization_info().uniform();
const UniformQuantizationInfo oq_info = dst->info()->quantization_info().uniform();
if(border_mode == BorderMode::CONSTANT)
{
const uint8_t const_border_value = static_cast<uint8_t>(constant_border_value.get<uint8_t>());
execute_window_loop(window, [&](const Coordinates & id)
{
const int32_t index_h = std::floor((id[idx_height] + sampling_offset) * hr - sampling_offset);
const int32_t index_w = *(reinterpret_cast<const int32_t *>(offsets->ptr_to_element(Coordinates(id[idx_width], id[idx_height]))));
const auto dx_val = *(reinterpret_cast<const float *>(dx->ptr_to_element(Coordinates(id[idx_width], id[idx_height]))));
const auto dy_val = *(reinterpret_cast<const float *>(dy->ptr_to_element(Coordinates(id[idx_width], id[idx_height]))));
const auto pixel_row_ptr = reinterpret_cast<const uint8_t *>(in.ptr());
const auto a00 = (0 <= index_w && index_w < in_dim_w && 0 <= index_h && index_h < in_dim_h) ?
(*(pixel_row_ptr + index_w * stride_w + index_h * stride_h)) :
const_border_value;
const auto a01 = (-1 <= index_w && index_w < in_dim_w - 1 && 0 <= index_h && index_h < in_dim_h) ?
(*(pixel_row_ptr + (index_w + 1) * stride_w + index_h * stride_h)) :
const_border_value;
const auto a10 = (0 <= index_w && index_w < in_dim_w && -1 <= index_h && index_h < in_dim_h - 1) ?
(*(pixel_row_ptr + index_w * stride_w + (index_h + 1) * stride_h)) :
const_border_value;
const auto a11 = (-1 <= index_w && index_w < in_dim_w - 1 && -1 <= index_h && index_h < in_dim_h - 1) ?
(*(pixel_row_ptr + (index_w + 1) * stride_w + (index_h + 1) * stride_h)) :
const_border_value;
const float inp00 = Qasymm8QuantizationHelper<uint8_t>::dequantize(a00, iq_info);
const float inp01 = Qasymm8QuantizationHelper<uint8_t>::dequantize(a01, iq_info);
const float inp10 = Qasymm8QuantizationHelper<uint8_t>::dequantize(a10, iq_info);
const float inp11 = Qasymm8QuantizationHelper<uint8_t>::dequantize(a11, iq_info);
*reinterpret_cast<uint8_t *>(out.ptr()) = Qasymm8QuantizationHelper<uint8_t>::quantize(scale_helpers::delta_bilinear(inp00, inp01, inp10, inp11, dx_val, dy_val), oq_info);
},
in, out);
}
else if(border_mode == BorderMode::REPLICATE)
{
execute_window_loop(window, [&](const Coordinates & id)
{
const int index_h = std::floor((id[idx_height] + sampling_offset) * hr - sampling_offset);
const int32_t index_w = *(reinterpret_cast<const int32_t *>(offsets->ptr_to_element(Coordinates(id[idx_width], id[idx_height]))));
const auto dx_val = *(reinterpret_cast<const float *>(dx->ptr_to_element(Coordinates(id[idx_width], id[idx_height]))));
const auto dy_val = *(reinterpret_cast<const float *>(dy->ptr_to_element(Coordinates(id[idx_width], id[idx_height]))));
const auto pixel_row_ptr = reinterpret_cast<const uint8_t *>(in.ptr());
auto clamped_w = utility::clamp<int>(index_w, 0, in_dim_w - 1);
auto clamped_w1 = utility::clamp<int>(index_w + 1, 0, in_dim_w - 1);
auto clamped_h = utility::clamp<int>(index_h, 0, in_dim_h - 1);
auto clamped_h1 = utility::clamp<int>(index_h + 1, 0, in_dim_h - 1);
const auto a00 = *(pixel_row_ptr + clamped_w * stride_w + clamped_h * stride_h);
const auto a01 = *(pixel_row_ptr + clamped_w1 * stride_w + clamped_h * stride_h);
const auto a10 = *(pixel_row_ptr + clamped_w * stride_w + clamped_h1 * stride_h);
const auto a11 = *(pixel_row_ptr + clamped_w1 * stride_w + clamped_h1 * stride_h);
const float inp00 = Qasymm8QuantizationHelper<uint8_t>::dequantize(a00, iq_info);
const float inp01 = Qasymm8QuantizationHelper<uint8_t>::dequantize(a01, iq_info);
const float inp10 = Qasymm8QuantizationHelper<uint8_t>::dequantize(a10, iq_info);
const float inp11 = Qasymm8QuantizationHelper<uint8_t>::dequantize(a11, iq_info);
*reinterpret_cast<uint8_t *>(out.ptr()) = Qasymm8QuantizationHelper<uint8_t>::quantize(scale_helpers::delta_bilinear(inp00, inp01, inp10, inp11, dx_val, dy_val), oq_info);
},
in, out);
}
else
{
ARM_COMPUTE_ERROR("Not implemented");
}
}
}
namespace cpu
{
void qasymm8_neon_scale(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy,
InterpolationPolicy policy, BorderMode border_mode, PixelValue constant_border_value, float sampling_offset,
bool align_corners, const Window &window)
{
if(policy == InterpolationPolicy::BILINEAR)
{
qasymm8_neon_scale_bilinear(src, dst, offsets, dx, dy, border_mode, constant_border_value, sampling_offset, align_corners, window);
}
else if(policy == InterpolationPolicy::NEAREST_NEIGHBOR)
{
nearest_neon_scale<uint8_t>(src, dst, offsets, sampling_offset, align_corners, window);
}
}
} // namespace cpu
} // namespace arm_compute