blob: ffd12e56d000339624bc31363ea433b54ada050a [file] [log] [blame]
/*
* Copyright (c) 2023-2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ACL_TESTS_VALIDATION_FIXTURES_MATMULFIXTURE_H
#define ACL_TESTS_VALIDATION_FIXTURES_MATMULFIXTURE_H
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "src/core/utils/quantization/AsymmHelpers.h"
#include "tests/framework/Asserts.h" // Required for ARM_COMPUTE_ASSERT
#include "tests/framework/Fixture.h"
#include "tests/validation/reference/ActivationLayer.h"
#include "tests/validation/reference/GEMM.h"
#include "tests/validation/reference/GEMMLowp.h"
#include "tests/validation/reference/Permute.h"
#include "tests/validation/reference/ReshapeLayer.h"
#include "tests/validation/Validation.h"
#include <limits>
#include <random>
#include <type_traits>
namespace arm_compute
{
namespace test
{
namespace validation
{
template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class MatMulGenericValidationFixture : public framework::Fixture
{
public:
void setup(TensorShape shape_a,
TensorShape shape_b,
TensorShape output_shape,
bool transpose_a,
bool transpose_b,
DataType data_type,
ActivationLayerInfo act_info,
int num_extra_runs,
Settings settings,
QuantizationInfo a_qinfo = QuantizationInfo(),
QuantizationInfo b_qinfo = QuantizationInfo(),
QuantizationInfo o_qinfo = QuantizationInfo())
{
// For brevity, the input shapes are assumed to be not-transposed for both a and b matrices.
if (transpose_a)
{
permute(shape_a, PermutationVector(1U, 0U));
}
if (transpose_b)
{
permute(shape_b, PermutationVector(1U, 0U));
}
_target = compute_target(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info,
num_extra_runs, settings, a_qinfo, b_qinfo, o_qinfo);
_reference = compute_reference(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info,
a_qinfo, b_qinfo, o_qinfo);
}
protected:
template <typename U>
void fill(U &&tensor, int i, float lo = -1.f, float hi = 1.f)
{
switch (tensor.data_type())
{
case DataType::BFLOAT16:
{
arm_compute::utils::uniform_real_distribution_16bit<bfloat16> distribution{float(lo), float(hi)};
library->fill(tensor, distribution, i);
break;
}
case DataType::F16:
{
arm_compute::utils::uniform_real_distribution_16bit<half> distribution{float(lo), float(hi)};
library->fill(tensor, distribution, i);
break;
}
case DataType::F32:
{
std::uniform_real_distribution<float> distribution(lo, hi);
library->fill(tensor, distribution, i);
break;
}
case DataType::QASYMM8:
case DataType::QASYMM8_SIGNED:
{
library->fill_tensor_uniform(tensor, i);
break;
}
default:
{
ARM_COMPUTE_ERROR("Unsupported data type.");
}
}
}
virtual TensorType compute_target(const TensorShape &shape_a,
const TensorShape &shape_b,
const TensorShape &output_shape,
bool transpose_a,
bool transpose_b,
DataType data_type,
ActivationLayerInfo act_info,
int num_extra_runs,
const Settings &settings,
QuantizationInfo a_qinfo,
QuantizationInfo b_qinfo,
QuantizationInfo o_qinfo)
{
// 1. Create Classes and configure function
// ----------------------------------------------------
// Create tensors
// Configure relevant classes and matmul function
TensorType a = create_tensor<TensorType>(shape_a, data_type, 1, a_qinfo);
TensorType b = create_tensor<TensorType>(shape_b, data_type, 1, b_qinfo);
TensorType dst = create_tensor<TensorType>(output_shape, data_type, 1, o_qinfo);
FunctionType matmul;
// Configure MatMulInfo class
MatMulInfo mm_info;
mm_info.adj_lhs(transpose_a).adj_rhs(transpose_b);
// Ensure values are dynamic
a.info()->set_are_values_constant(false);
b.info()->set_are_values_constant(false);
// Configure operator
matmul.configure(&a, &b, &dst, mm_info, settings, act_info);
// Assertions
ARM_COMPUTE_ASSERT(a.info()->is_resizable());
ARM_COMPUTE_ASSERT(b.info()->is_resizable());
ARM_COMPUTE_ASSERT(dst.info()->is_resizable());
// Allocate tensors
a.allocator()->allocate();
b.allocator()->allocate();
dst.allocator()->allocate();
ARM_COMPUTE_ASSERT(!a.info()->is_resizable());
ARM_COMPUTE_ASSERT(!b.info()->is_resizable());
ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
// For multiple runs.
for (int i = 0; i < num_extra_runs; i++)
{
// Stress dynamic tensors by running multiple times.
// --------------------------------------------------------
// Fill tensors with new seed
// Run function
const int seed_offset = num_extra_runs * 100;
fill(AccessorType(a), seed_offset);
fill(AccessorType(b), seed_offset + 1);
matmul.run();
}
// 2. Final Run for reference comparison
// --------------------------------------------------------
// Re-fill tensors same seed as reference run
// Compute MatMul operation
fill(AccessorType(a), 2);
fill(AccessorType(b), 3);
matmul.run();
return dst;
}
template <typename TT>
typename std::enable_if < !std::is_integral<TT>::value, SimpleTensor<TT >>::type
compute_reference_gemm(const SimpleTensor<TT> &a,
const SimpleTensor<TT> &b,
const SimpleTensor<TT> &c,
float alpha,
float beta,
const QuantizationInfo &o_qinfo)
{
ARM_COMPUTE_UNUSED(o_qinfo);
return reference::gemm(a, b, c, alpha, beta);
}
template <typename TT>
typename std::enable_if<std::is_integral<TT>::value, SimpleTensor<TT>>::type
compute_reference_gemm(const SimpleTensor<TT> &a,
const SimpleTensor<TT> &b,
const SimpleTensor<TT> &c,
float alpha,
float beta,
const QuantizationInfo &o_qinfo)
{
ARM_COMPUTE_UNUSED(alpha, beta);
const auto aq = a.quantization_info().uniform();
const auto bq = b.quantization_info().uniform();
const auto oq = o_qinfo.uniform();
const auto multiplier = aq.scale * bq.scale / oq.scale;
int32_t output_multiplier = 0;
int32_t output_shift = 0;
quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
std::vector<int32_t> output_multipliers{output_multiplier};
std::vector<int32_t> output_shifts{output_shift};
//The lhs and rhs offsets are negated here to keep the reference aligned with the function implementation where the lhs and rhs offsets are also negated.
const auto tmp = reference::gemmlowp_matrix_multiply_core<int32_t>(a, b, c.shape(), -aq.offset, -bq.offset);
auto output = reference::gemmlowp_quantize_down_scale_by_fixedpoint<int32_t, TT>(
tmp, output_multipliers, output_shifts, oq.offset, std::numeric_limits<int32_t>::lowest(),
std::numeric_limits<int32_t>::max());
output.quantization_info(o_qinfo);
return output;
}
SimpleTensor<T> compute_reference(const TensorShape &a_shape,
const TensorShape &b_shape,
const TensorShape &output_shape,
bool transpose_a,
bool transpose_b,
DataType data_type,
ActivationLayerInfo act_info,
QuantizationInfo a_qinfo,
QuantizationInfo b_qinfo,
QuantizationInfo o_qinfo)
{
// We collapse dimensions > 2 onto dimension 2, i.e. 4D+ tensors will look like 3D
// This is necessary unless we choose to extend gemm reference for 4D+ tensors
TensorShape output_shape_collapsed = output_shape.collapsed_from(Window::DimZ);
TensorShape a_shape_collapsed = a_shape.collapsed_from(Window::DimZ);
TensorShape b_shape_collapsed = b_shape.collapsed_from(Window::DimZ);
// Create reference
SimpleTensor<T> a{a_shape_collapsed, data_type, 1, a_qinfo};
SimpleTensor<T> b{b_shape_collapsed, data_type, 1, b_qinfo};
SimpleTensor<T> c{output_shape_collapsed, data_type, 1};
// Fill reference
fill(a, 2);
fill(b, 3);
/* Note: Assuming the usual batch matmul dimensions A = (B x M x K), B = (B x K x N), if transpose_a is set to true, then A is assumed to be (B x K x M),
therefore, A must be pre-transposed before passing it to the fixture. And, we transpose A again in the fixture to make it (B x M x K)
in order to be able to call reference implementation that works with (B x M x K) input.
Similarly, if transpose_b is set to true, then B is assumed to be (B x N x K), B must be pre-transposed before passing it to the fixture. */
// Define transposed shapes
TensorShape a_transposed_shape(a.shape());
a_transposed_shape.set(0, a.shape().y());
a_transposed_shape.set(1, a.shape().x());
TensorShape b_transposed_shape(b.shape());
b_transposed_shape.set(0, b.shape().y());
b_transposed_shape.set(1, b.shape().x());
// Define transposed tensors
SimpleTensor<T> a_transposed{a_transposed_shape, data_type};
SimpleTensor<T> b_transposed{b_transposed_shape, data_type};
// pretranspose a if necessary
if (transpose_a)
{
a_transposed = reference::permute<T>(a, PermutationVector(1U, 0U));
}
// pretranspose b if necessary
if (transpose_b)
{
b_transposed = reference::permute<T>(b, PermutationVector(1U, 0U));
}
// Setting beta to 0 will effectively disable C for the
// computation of the reference: alpha * A * B + 0 * C
// Use transposed tensors if boolean enabled else use original tensors
auto result = compute_reference_gemm<T>((transpose_a) ? a_transposed : a, (transpose_b) ? b_transposed : b, c,
1.0f, 0.f, o_qinfo);
result = reference::activation_layer<T>(result, act_info, o_qinfo);
// We reshape the gemm output back if the tensor is high dimensional
if (output_shape_collapsed != output_shape)
{
result = reference::reshape_layer(result, output_shape);
}
return result;
}
TensorType _target{};
SimpleTensor<T> _reference{};
};
/// TODO: (ONCPUML-1451) The current state of this fixture is interim and a longer-term testing method will be implemented later.
/// @note: Currently we support only a 2x2 test due to the lack of reorder ref. implementation.
template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class MatMulFixedFormatFixture
: public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
{
public:
TensorType compute_target(const TensorShape &shape_a,
const TensorShape &shape_b,
const TensorShape &output_shape,
bool transpose_a,
bool transpose_b,
DataType data_type,
ActivationLayerInfo act_info,
int num_extra_runs,
const Settings &settings,
QuantizationInfo a_qinfo,
QuantizationInfo b_qinfo,
QuantizationInfo o_qinfo) override
{
// 1. Create Classes and configure function
// ----------------------------------------------------
// Create tensors
// Configure relevant classes and matmul function
TensorType a = create_tensor<TensorType>(shape_a, data_type, 1, a_qinfo);
TensorType b = create_tensor<TensorType>(shape_b, data_type, 1, b_qinfo);
TensorType dst = create_tensor<TensorType>(output_shape, data_type, 1, o_qinfo);
const auto weight_tensor_info = TensorInfo(*b.info());
const TensorInfo new_tensor_info = prepare_weights(weight_tensor_info);
TensorType weights_transformed = create_tensor<TensorType>(new_tensor_info);
// Configure MatMulInfo class
MatMulInfo mm_info;
mm_info.adj_lhs(transpose_a).adj_rhs(transpose_b);
// Ensure values are dynamic
a.info()->set_are_values_constant(false);
b.info()->set_are_values_constant(false);
weights_transformed.info()->set_are_values_constant(false);
FunctionType matmul;
// Configure operator
matmul.configure(&a, &weights_transformed, &dst, mm_info, settings, act_info);
// Assertions
ARM_COMPUTE_ASSERT(a.info()->is_resizable());
ARM_COMPUTE_ASSERT(b.info()->is_resizable());
ARM_COMPUTE_ASSERT(dst.info()->is_resizable());
ARM_COMPUTE_ASSERT(weights_transformed.info()->is_resizable());
// Allocate tensors
a.allocator()->allocate();
b.allocator()->allocate();
dst.allocator()->allocate();
weights_transformed.allocator()->allocate();
ARM_COMPUTE_ASSERT(!a.info()->is_resizable());
ARM_COMPUTE_ASSERT(!b.info()->is_resizable());
ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
ARM_COMPUTE_ASSERT(!weights_transformed.info()->is_resizable());
// For multiple runs.
for (int i = 0; i < num_extra_runs; i++)
{
// Stress dynamic tensors by running multiple times.
// --------------------------------------------------------
// Fill tensors with new seed
// Run function
const int seed_offset = num_extra_runs * 100;
this->fill(AccessorType(a), seed_offset);
this->fill(AccessorType(b), seed_offset + 1);
matmul.run();
}
// 2. Final Run for reference comparison
// --------------------------------------------------------
// Re-fill tensors same seed as reference run
// Compute MatMul operation
this->fill(AccessorType(a), 2);
this->fill(AccessorType(b), 3);
rearrange_data(AccessorType(b), AccessorType(weights_transformed));
matmul.run();
return dst;
}
void setup(TensorShape shape_a,
TensorShape shape_b,
TensorShape output_shape,
bool transpose_a,
bool transpose_b,
DataType data_type,
ActivationLayerInfo act_info,
int num_extra_runs,
Settings settings,
QuantizationInfo a_qinfo,
QuantizationInfo b_qinfo,
QuantizationInfo o_qinfo)
{
if (CPUInfo::get().has_bf16())
{
MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(
shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, settings,
a_qinfo, b_qinfo, o_qinfo);
}
}
private:
TensorInfo prepare_weights(const TensorInfo tensor_info)
{
const DataLayout data_layout = tensor_info.data_layout();
ARM_COMPUTE_EXPECT(data_layout == DataLayout::NCHW, framework::LogLevel::ERRORS);
const DataType data_type = tensor_info.data_type();
const TensorShape tensor_shape = tensor_info.tensor_shape();
const int H = tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT)];
const int W = tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH)];
ARM_COMPUTE_EXPECT(H <= 2 && W <= 2, framework::LogLevel::ERRORS);
arm_compute::Strides strides_in_bytes = tensor_info.strides_in_bytes();
strides_in_bytes.set(1, 32);
strides_in_bytes.set(2, 32);
const size_t offset_first_element_in_bytes = tensor_info.offset_first_element_in_bytes();
const size_t total_size_in_bytes = 32;
const TensorShape TS(H, W);
TensorInfo new_tensor_info = tensor_info;
new_tensor_info.init(TS, tensor_info.num_channels(), data_type, strides_in_bytes, offset_first_element_in_bytes,
total_size_in_bytes);
return new_tensor_info;
}
void rearrange_data(const AccessorType src, AccessorType dst)
{
const TensorShape src_tensor_shape = src.shape();
const DataLayout data_layout = src.data_layout();
ARM_COMPUTE_EXPECT(data_layout == DataLayout::NCHW, framework::LogLevel::ERRORS);
const unsigned int O =
src_tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES)]; // N=O
const unsigned int H =
src_tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT)];
const unsigned int W =
src_tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH)];
const unsigned int I =
src_tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL)]; // C=I
ARM_COMPUTE_EXPECT(H <= 2 && W <= 2, framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(I == 1 && O == 1, framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(src.num_elements() <= dst.num_elements(), framework::LogLevel::ERRORS);
const T *src_ptr = reinterpret_cast<const T *>(src.data());
T *dst_ptr = reinterpret_cast<T *>(dst.data());
// rearrange indexes for 2x2 input and weight
int dst_idx[] = {0, 4, 1, 5};
for (int i = 0; i < 4; i++)
{
dst_ptr[dst_idx[i]] = src_ptr[i];
}
}
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class MatMulValidationFixture
: public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
{
public:
void setup(TensorShape shape_a,
TensorShape shape_b,
TensorShape output_shape,
bool transpose_a,
bool transpose_b,
DataType data_type)
{
MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(
shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, ActivationLayerInfo(), 0, Settings());
}
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class MatMulValidationWithDynamicTensorsFixture
: public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
{
public:
void setup(TensorShape shape_a,
TensorShape shape_b,
TensorShape output_shape,
bool transpose_a,
bool transpose_b,
DataType data_type,
ActivationLayerInfo act_info,
int num_extra_runs)
{
MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(
shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, Settings());
}
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class QuantizedMatMulValidationFixture
: public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
{
public:
void setup(TensorShape shape_a,
TensorShape shape_b,
TensorShape output_shape,
bool transpose_a,
bool transpose_b,
DataType data_type,
ActivationLayerInfo act_info,
int num_extra_runs,
QuantizationInfo a_qinfo,
QuantizationInfo b_qinfo,
QuantizationInfo o_qinfo)
{
MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(
shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, Settings(),
a_qinfo, b_qinfo, o_qinfo);
}
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class MatMulValidationWithActivationFixture
: public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
{
public:
void setup(TensorShape shape_a,
TensorShape shape_b,
TensorShape output_shape,
bool transpose_a,
bool transpose_b,
DataType data_type,
ActivationLayerInfo act_info)
{
MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(
shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, 0, Settings());
}
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class MatMulValidationWithActivationAlphaBetaFixture
: public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
{
public:
void setup(TensorShape shape_a,
TensorShape shape_b,
TensorShape output_shape,
bool transpose_a,
bool transpose_b,
DataType data_type,
ActivationLayerInfo::ActivationFunction function,
float alpha_beta)
{
ActivationLayerInfo act_info(function, alpha_beta, alpha_beta);
MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(
shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, 0, Settings());
}
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class QuantizedMatMulValidationWithActivationFixture
: public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
{
public:
void setup(TensorShape shape_a,
TensorShape shape_b,
TensorShape output_shape,
bool transpose_a,
bool transpose_b,
DataType data_type,
ActivationLayerInfo::ActivationFunction function,
float alpha_beta,
int num_extra_runs,
QuantizationInfo a_qinfo,
QuantizationInfo b_qinfo,
QuantizationInfo o_qinfo)
{
ActivationLayerInfo act_info(function, alpha_beta, alpha_beta);
MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(
shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, Settings(),
a_qinfo, b_qinfo, o_qinfo);
}
};
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif // ACL_TESTS_VALIDATION_FIXTURES_MATMULFIXTURE_H