blob: c5eef9dd77990e99a4ec1ffd6860e7b689bd2938 [file] [log] [blame]
/*
* Copyright (c) 2017-2020 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/core/Helpers.h"
#include "support/ToolchainSupport.h"
#include <cmath>
#include <limits>
#include <numeric>
namespace arm_compute
{
namespace quantization
{
constexpr int64_t fixed_point_one_Q0 = (1LL << 31);
constexpr float epsilon = 0.00001f;
Status calculate_quantized_multiplier(float multiplier, int32_t *quant_multiplier, int32_t *shift)
{
if(multiplier >= 1.f)
{
Status status = calculate_quantized_multiplier_greater_than_one(multiplier, quant_multiplier, shift);
*shift *= -1;
return status;
}
else
{
return calculate_quantized_multiplier_less_than_one(multiplier, quant_multiplier, shift);
}
}
Status calculate_quantized_multiplier_less_than_one(float multiplier,
int32_t *quant_multiplier,
int32_t *right_shift)
{
ARM_COMPUTE_RETURN_ERROR_ON(quant_multiplier == nullptr);
ARM_COMPUTE_RETURN_ERROR_ON(right_shift == nullptr);
ARM_COMPUTE_RETURN_ERROR_ON(multiplier < -epsilon);
ARM_COMPUTE_RETURN_ERROR_ON(multiplier > 1.0f + epsilon);
if(std::fabs(0.0f - multiplier) < epsilon)
{
*quant_multiplier = 0;
*right_shift = 0;
return Status{};
}
int shift_exp = 0;
const double q = std::frexp(multiplier, &shift_exp);
*right_shift = -1 * shift_exp;
auto q_fixed = static_cast<int64_t>(support::cpp11::round(q * fixed_point_one_Q0));
ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0);
if(q_fixed == fixed_point_one_Q0)
{
q_fixed /= 2;
--*right_shift;
}
ARM_COMPUTE_RETURN_ERROR_ON(*right_shift < 0);
ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits<int32_t>::max());
*quant_multiplier = static_cast<int32_t>(q_fixed);
return Status{};
}
Status calculate_quantized_multiplier_greater_than_one(float multiplier,
int32_t *quantized_multiplier,
int32_t *left_shift)
{
ARM_COMPUTE_RETURN_ERROR_ON(quantized_multiplier == nullptr);
ARM_COMPUTE_RETURN_ERROR_ON(left_shift == nullptr);
ARM_COMPUTE_RETURN_ERROR_ON(multiplier < 1.f);
int shift_exp = 0;
const double q = std::frexp(multiplier, &shift_exp);
*left_shift = shift_exp;
auto q_fixed = static_cast<int64_t>(support::cpp11::round(q * fixed_point_one_Q0));
ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0);
if(q_fixed == fixed_point_one_Q0)
{
q_fixed /= 2;
++*left_shift;
}
ARM_COMPUTE_RETURN_ERROR_ON(*left_shift < 0);
ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits<int32_t>::max());
*quantized_multiplier = static_cast<int32_t>(q_fixed);
return Status{};
}
arm_compute::Status calculate_quantized_multipliers(const QuantizationInfo &iq_info,
const QuantizationInfo &wq_info,
const QuantizationInfo &oq_info,
GEMMLowpOutputStageInfo &stage_info)
{
ARM_COMPUTE_RETURN_ERROR_ON(iq_info.scale().empty());
ARM_COMPUTE_RETURN_ERROR_ON(wq_info.scale().empty());
ARM_COMPUTE_RETURN_ERROR_ON(oq_info.scale().empty());
const unsigned int size = wq_info.scale().size();
auto &quant_multipliers = stage_info.gemmlowp_multipliers;
auto &quant_shifts = stage_info.gemmlowp_shifts;
quant_multipliers.resize(size);
quant_shifts.resize(size);
const auto &w_scales = wq_info.scale();
const float i_scale = iq_info.scale().at(0);
const float o_scale = oq_info.scale().at(0);
for(unsigned int i = 0; i < size; ++i)
{
const float multiplier = i_scale * w_scales[i] / o_scale;
int32_t quant_multiplier = 0;
int32_t quant_shift = 0;
ARM_COMPUTE_RETURN_ON_ERROR(calculate_quantized_multiplier(multiplier, &quant_multiplier, &quant_shift));
quant_multipliers[i] = quant_multiplier;
quant_shifts[i] = quant_shift;
}
// Legacy part
stage_info.gemmlowp_shift = quant_shifts[0];
stage_info.gemmlowp_multiplier = quant_multipliers[0];
return Status{};
}
std::pair<int, int> get_min_max_values_from_quantized_data_type(DataType data_type)
{
int min_quant_val = 0;
int max_quant_val = 0;
switch(data_type)
{
case DataType::QASYMM8:
min_quant_val = std::numeric_limits<uint8_t>::min();
max_quant_val = std::numeric_limits<uint8_t>::max();
break;
case DataType::QSYMM8:
case DataType::QASYMM8_SIGNED:
min_quant_val = std::numeric_limits<int8_t>::min();
max_quant_val = std::numeric_limits<int8_t>::max();
break;
case DataType::QASYMM16:
min_quant_val = std::numeric_limits<uint16_t>::min();
max_quant_val = std::numeric_limits<uint16_t>::max();
break;
case DataType::QSYMM16:
min_quant_val = std::numeric_limits<int16_t>::min();
max_quant_val = std::numeric_limits<int16_t>::max();
break;
default:
ARM_COMPUTE_ERROR("Unsupported data type");
}
return std::make_pair(min_quant_val, max_quant_val);
}
void compute_quantized_multipliers_and_shifts(const ITensorInfo *input,
const ITensorInfo *weights,
const ITensorInfo *output,
unsigned int idx_ofms,
int32_t *output_multipliers_ptr,
int32_t *output_shifts_ptr)
{
const unsigned int num_filters = is_data_type_quantized_per_channel(weights->data_type()) ? weights->dimension(idx_ofms) : 1;
const UniformQuantizationInfo iq_info = input->quantization_info().uniform();
const QuantizationInfo wq_info = weights->quantization_info();
const UniformQuantizationInfo oq_info = output->quantization_info().uniform();
for(unsigned int i = 0; i < num_filters; ++i)
{
int32_t output_multiplier = 0;
int32_t output_shift = 0;
const float multiplier = iq_info.scale * wq_info.scale()[i] / oq_info.scale;
calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
output_multipliers_ptr[i] = output_multiplier;
output_shifts_ptr[i] = output_shift;
}
}
int32_t saturating_rounding_doubling_highmul(int32_t a, int32_t b)
{
bool overflow = a == b && a == std::numeric_limits<int32_t>::min();
int64_t a_64(a);
int64_t b_64(b);
int64_t ab_64 = a_64 * b_64;
int32_t nudge = ab_64 >= 0 ? (1 << 30) : (1 - (1 << 30));
int32_t ab_x2_high32 = static_cast<int32_t>((ab_64 + nudge) / (1ll << 31));
return overflow ? std::numeric_limits<int32_t>::max() : ab_x2_high32;
}
inline int32_t rounding_divide_by_pow2(int32_t x, int exponent)
{
const int32_t mask = (1 << exponent) - 1;
const int32_t threshold = (mask >> 1) + (x < 0 ? 1 : 0);
return (x >> exponent) + ((x & mask) > threshold ? 1 : 0);
}
int32_t multiply_by_quantized_multipler(int32_t input, int32_t qmul, int32_t shift)
{
const auto left_shift = shift > 0 ? shift : 0;
const auto right_shift = shift > 0 ? 0 : -shift;
return rounding_divide_by_pow2(saturating_rounding_doubling_highmul(input * (1 << left_shift), qmul), right_shift);
}
int32_t saturating_rounding_multiply_by_pow2(int32_t exponent, int32_t v)
{
if(exponent == 0)
{
return v;
}
else if(exponent < 0)
{
return rounding_divide_by_pow2(v, -exponent);
}
else
{
constexpr auto min = std::numeric_limits<int32_t>::min();
constexpr auto max = std::numeric_limits<int32_t>::max();
const auto width = sizeof(int32_t) * 8;
const int32_t threshold = ((1 << (width - 1 - exponent)) - 1);
bool pos_mask = v > threshold;
bool neg_mask = v < -threshold;
int32_t result = v << exponent;
result = pos_mask ? max : result;
result = neg_mask ? min : result;
return result;
}
}
} // quantization
} // arm_compute