blob: 9c7ad92761871bc66a410f8dd568b0a225c47150 [file] [log] [blame]
/*
* Copyright (c) 2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/operators/CpuGemm.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "src/common/utils/Log.h"
#include "src/core/CPP/Validate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/MemoryHelpers.h"
#include "src/cpu/utils/CpuAuxTensorHandler.h"
using namespace arm_compute::experimental;
using namespace arm_compute::misc::shape_calculator;
namespace arm_compute
{
namespace cpu
{
namespace
{
cpu::AsmGemmInfo init_assembly_metadata(const GEMMInfo &info)
{
cpu::AsmGemmInfo asm_info;
asm_info.method = cpu::AsmConvMethod::Im2Col;
asm_info.reinterpret_input_as_3d = info.reinterpret_input_as_3d();
asm_info.depth_output_gemm3d = info.depth_output_gemm3d();
asm_info.activation_info = info.activation_info();
asm_info.fast_mode = info.fast_math();
return asm_info;
}
} // namespace
void CpuGemm::configure(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, ITensorInfo *d, float alpha, float beta, const GEMMInfo &gemm_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, d);
ARM_COMPUTE_ERROR_THROW_ON(CpuGemm::validate(a, b, c, d, alpha, beta, gemm_info));
ARM_COMPUTE_LOG_PARAMS(a, b, c, d, alpha, beta, gemm_info);
const cpu::AsmGemmInfo asm_info = init_assembly_metadata(gemm_info);
const bool is_c_bias = gemm_info.reshape_b_only_on_first_run();
bool run_optimised = bool(cpu::CpuGemmAssemblyDispatch::validate(a, b, (is_c_bias) ? c : nullptr, d, asm_info));
// Check if we need to reshape the matrix B only on the first run
_is_prepared = false;
_reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run();
_run_vector_matrix_multiplication = a->dimension(1) < 2;
_run_alpha_scale = alpha != 1.f;
_run_bias_addition = c != nullptr && gemm_info.reshape_b_only_on_first_run();
_run_addition = beta != 0 && c != nullptr && !gemm_info.reshape_b_only_on_first_run();
_run_activation = gemm_info.activation_info().enabled() && (!run_optimised || (run_optimised
&& !cpu::CpuGemmAssemblyDispatch::is_activation_supported(gemm_info.activation_info())));
if(run_optimised)
{
const ITensorInfo *c_to_use = is_c_bias ? c : nullptr;
_asm_glue = std::make_unique<cpu::CpuGemmAssemblyDispatch>();
_asm_glue->configure(a, b, c_to_use, d, asm_info);
ARM_COMPUTE_ERROR_ON(!_asm_glue->is_configured());
auto asm_mem_req = _asm_glue->workspace();
_aux_mem[AsmGemmWorkspace] = asm_mem_req[AsmGemmWorkspace];
_aux_mem[Pretraspose] = asm_mem_req[Pretraspose];
// Scale product by alpha
if(_run_alpha_scale)
{
_alpha_scale_func = std::make_unique<cpu::CpuActivation>();
_alpha_scale_func->configure(d, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, alpha, 0.f));
}
}
else
{
// Pick output tensor in case bias addition should be performed
ITensorInfo *gemm_output_to_use = (_run_bias_addition) ? &_tmp_d : d;
_mm_kernel = std::make_unique<cpu::kernels::CpuGemmMatrixMultiplyKernel>();
// Select between GEMV and GEMM
if(_run_vector_matrix_multiplication)
{
// Configure the matrix multiply kernel
_mm_kernel->configure(a, b, gemm_output_to_use, alpha, false);
}
else
{
const int m = a->dimension(1);
const int n = b->dimension(0);
const int k = a->dimension(0);
// Configure interleave kernel
_interleave_kernel = std::make_unique<cpu::kernels::CpuGemmInterleave4x4Kernel>();
_interleave_kernel->configure(a, &_tmp_a);
_aux_mem[InterleavedLHS] = MemoryInfo(offset_int_vec(InterleavedLHS), MemoryLifetime::Temporary, _tmp_a.total_size());
// Configure transpose kernel
_transpose_kernel = std::make_unique<cpu::kernels::CpuGemmTranspose1xWKernel>();
_transpose_kernel->configure(b, &_tmp_b);
_aux_mem[TransposedRHS] = MemoryInfo(offset_int_vec(TransposedRHS), MemoryLifetime::Persistent, _tmp_b.total_size());
// Configure matrix multiplication kernel
_mm_kernel->configure(&_tmp_a, &_tmp_b, gemm_output_to_use, alpha, true, GEMMReshapeInfo(m, n, k));
}
if(_run_bias_addition)
{
_add_bias = std::make_unique<cpu::CpuAdd>();
_add_bias->configure(gemm_output_to_use, c, d, ConvertPolicy::SATURATE);
_aux_mem[TempResult] = MemoryInfo(offset_int_vec(TempResult), MemoryLifetime::Temporary, _tmp_d.total_size());
}
}
// Configure matrix addition kernel
if(_run_addition)
{
_ma_kernel = std::make_unique<cpu::kernels::CpuGemmMatrixAdditionKernel>();
_ma_kernel->configure(c, d, beta);
}
// Configure activation
if(_run_activation)
{
_activation_func = std::make_unique<cpu::CpuActivation>();
_activation_func->configure(d, nullptr, gemm_info.activation_info());
}
}
Status CpuGemm::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *d, float alpha, float beta, const GEMMInfo &gemm_info)
{
ARM_COMPUTE_UNUSED(alpha);
const bool is_c_bias = gemm_info.reshape_b_only_on_first_run();
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(a);
ARM_COMPUTE_RETURN_ERROR_ON_CPU_BF16_UNSUPPORTED(a);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::BFLOAT16, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, b);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->dimension(0) != b->dimension(1), "The product AB is defined only if the number of columns in A is equal to the number of rows in B");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported");
if(a->data_type() != DataType::BFLOAT16)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, d);
}
if(c != nullptr && !is_c_bias)
{
ARM_COMPUTE_RETURN_ERROR_ON(gemm_info.depth_output_gemm3d() != 0);
ARM_COMPUTE_RETURN_ERROR_ON(gemm_info.reinterpret_input_as_3d());
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(c, d);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->dimension(1) != c->dimension(1), "The C matrix must have the same number of rows as the matrix A");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(b->dimension(0) != c->dimension(0), "The C matrix must have the same number of columns as the matrix B");
}
if(d->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON(b->dimension(0) != d->dimension(0));
if(gemm_info.depth_output_gemm3d() != 0)
{
if(gemm_info.reinterpret_input_as_3d())
{
ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != d->dimension(1));
ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(2) != d->dimension(2));
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != d->dimension(1) * d->dimension(2));
}
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != d->dimension(1));
}
}
// Check if we need to run the optimized assembly kernel
cpu::AsmGemmInfo asm_info = init_assembly_metadata(gemm_info);
const bool run_optimised = bool(cpu::CpuGemmAssemblyDispatch::validate(a, b, is_c_bias ? c : nullptr, d, asm_info));
if(!run_optimised)
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.reinterpret_input_as_3d(), "CpuGemm cannot reinterpret the input tensor as 3D");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.depth_output_gemm3d() != 0, "CpuGemm cannot reinterpret the output tensor as 3D");
// Check if the first input tensor is a vector.
const bool run_vector_matrix_multiplication = a->dimension(1) < 2;
// Check if we need to reshape the matrix A and matrix B
const bool run_interleave_transpose = !run_vector_matrix_multiplication && !(gemm_info.reshape_b_only_on_first_run());
// Arguments used by GEMMReshapeInfo
// If we pass the matrix A and matrix B reshaped to CpuGemmMatrixMultiplyKernel, we need to pass m, n, k, mult_transpose1xW_width and mult_interleave4x4_height to GEMMReshapeInfo
// in order to know how the matrices have been reshaped
const int m = a->dimension(1);
const int n = b->dimension(0);
const int k = a->dimension(0);
int mult_transpose1xW_width = 1;
int mult_interleave4x4_height = 1;
const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(m, n, k, mult_transpose1xW_width, mult_interleave4x4_height, gemm_info.depth_output_gemm3d());
const ITensorInfo *matrix_a_info = a;
const ITensorInfo *matrix_b_info = b;
TensorInfo tmp_a_info{};
TensorInfo tmp_b_info{};
TensorInfo tmp_output_info = *d->clone();
if(run_interleave_transpose)
{
matrix_a_info = &tmp_a_info;
matrix_b_info = &tmp_b_info;
// Validate interleave kernel
auto_init_if_empty(tmp_a_info, a->clone()->set_tensor_shape(compute_interleaved_shape(*a, mult_interleave4x4_height, gemm_info.reinterpret_input_as_3d())));
ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmInterleave4x4Kernel::validate(a, &tmp_a_info));
// Validate transpose kernel
auto_init_if_empty(tmp_b_info, b->clone()->set_tensor_shape(compute_transpose1xW_with_element_size_shape(*b, mult_transpose1xW_width)));
ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmTranspose1xWKernel::validate(b, &tmp_b_info));
}
// Validate matrix multiply
auto_init_if_empty(tmp_output_info, matrix_a_info->clone()->set_tensor_shape(compute_mm_shape(*matrix_a_info, *matrix_b_info, run_interleave_transpose, reshape_info)));
ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, &tmp_output_info, alpha, run_interleave_transpose, reshape_info));
if(c != nullptr && gemm_info.reshape_b_only_on_first_run())
{
ARM_COMPUTE_RETURN_ON_ERROR(cpu::CpuAdd::validate(&tmp_output_info, c, d, ConvertPolicy::SATURATE));
}
}
// Validate matrix addition kernel
if(beta != 0 && c != nullptr && !is_c_bias)
{
ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmMatrixAdditionKernel::validate(c, d, beta));
}
// Validate activation
const ActivationLayerInfo &activation = gemm_info.activation_info();
if(activation.enabled())
{
ARM_COMPUTE_RETURN_ON_ERROR(cpu::CpuActivation::validate(d, nullptr, activation));
}
return Status{};
}
void CpuGemm::run(ITensorPack &tensors)
{
prepare(tensors);
auto a = tensors.get_const_tensor(ACL_SRC_0);
auto b = tensors.get_const_tensor(ACL_SRC_1);
auto c = tensors.get_const_tensor(ACL_SRC_2);
auto d = tensors.get_tensor(ACL_DST);
if(_asm_glue->is_configured())
{
// Pass c to asm dispatch only if it's the bias tensor
ITensorPack asm_pack = tensors;
asm_pack.add_const_tensor(ACL_SRC_2, (_reshape_b_only_on_first_run) ? c : nullptr);
_asm_glue->run(asm_pack);
if(_run_alpha_scale)
{
ITensorPack pack{ { ACL_SRC, d }, { ACL_DST, d } };
_alpha_scale_func->run(pack);
}
}
else
{
CpuAuxTensorHandler interleaved_a(offset_int_vec(InterleavedLHS), _tmp_a, tensors, true);
CpuAuxTensorHandler transposed_b(offset_int_vec(TransposedRHS), _tmp_b, tensors, true);
CpuAuxTensorHandler temp_d(offset_int_vec(TempResult), _tmp_d, tensors, true);
ITensorPack mm_pack{ { ACL_SRC_0, a }, { ACL_SRC_1, b }, { ACL_DST, (_run_bias_addition) ? temp_d.get() : d } };
if(!_run_vector_matrix_multiplication)
{
// Run interleave kernel
ITensorPack interleave_pack{ { ACL_SRC, a }, { ACL_DST, interleaved_a.get() } };
NEScheduler::get().schedule_op(_interleave_kernel.get(), Window::DimY, _interleave_kernel->window(), interleave_pack);
if(!_reshape_b_only_on_first_run)
{
// Run transpose kernel
ITensorPack transpose_pack{ { ACL_SRC, b }, { ACL_DST, transposed_b.get() } };
NEScheduler::get().schedule_op(_transpose_kernel.get(), Window::DimY, _transpose_kernel->window(), transpose_pack);
}
// Use reshaped matrices
mm_pack.add_const_tensor(ACL_SRC_0, interleaved_a.get());
mm_pack.add_const_tensor(ACL_SRC_1, transposed_b.get());
}
NEScheduler::get().schedule_op(_mm_kernel.get(), _run_vector_matrix_multiplication ? Window::DimX : Window::DimY, _mm_kernel->window(), mm_pack);
// Run bias addition kernel
if(_run_bias_addition)
{
ITensorPack pack{ { ACL_SRC_0, temp_d.get() }, { ACL_SRC_1, c }, { ACL_DST, d } };
_add_bias->run(pack);
}
}
// Run matrix addition kernel
if(_run_addition)
{
ITensorPack c_add_pack{ { ACL_SRC, c }, { ACL_DST, d } };
NEScheduler::get().schedule_op(_ma_kernel.get(), Window::DimY, _ma_kernel->window(), c_add_pack);
}
// Run activation function
if(_run_activation)
{
ITensorPack pack{ { ACL_SRC, d }, { ACL_DST, d } };
_activation_func->run(pack);
}
}
void CpuGemm::prepare(ITensorPack &tensors)
{
if(!_is_prepared)
{
if(_asm_glue->is_configured())
{
_asm_glue->prepare(tensors);
}
else if(_reshape_b_only_on_first_run && !_run_vector_matrix_multiplication)
{
const ITensor *b = tensors.get_const_tensor(ACL_SRC_1);
ITensor *b_aux = utils::cast::polymorphic_cast<ITensor *>(tensors.get_tensor(offset_int_vec(TransposedRHS)));
ARM_COMPUTE_ERROR_ON_NULLPTR(b, b_aux);
CpuAuxTensorHandler transposed_b(_tmp_b, *b_aux);
ITensorPack transpose_pack{ { ACL_SRC, b }, { ACL_DST, transposed_b.get() } };
NEScheduler::get().schedule_op(_transpose_kernel.get(), Window::DimY, _transpose_kernel->window(), transpose_pack);
}
_is_prepared = true;
}
}
experimental::MemoryRequirements CpuGemm::workspace() const
{
return _aux_mem;
}
} // namespace cpu
} // namespace arm_compute