blob: b84bdd54e965f173c869479bc5d88809363cceca [file] [log] [blame]
/*
* Copyright (c) 2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/kernels/CpuAddMulAddKernel.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Validate.h"
#include "src/core/CPP/Validate.h"
#include "src/core/common/Registrars.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/cpu/kernels/addmuladd/list.h"
namespace arm_compute
{
namespace cpu
{
namespace kernels
{
namespace
{
static const std::vector<CpuAddMulAddKernel::AddMulAddKernel> available_kernels =
{
#ifdef __aarch64__
{
"neon_fp32_add_mul_add",
[](const DataTypeISASelectorData & data) { return (data.dt == DataType::F32); },
REGISTER_FP32_NEON(arm_compute::cpu::add_mul_add_fp32_neon)
},
{
"neon_fp16_add_mul_add",
[](const DataTypeISASelectorData & data) { return (data.dt == DataType::F16); },
REGISTER_FP16_NEON(arm_compute::cpu::add_mul_add_fp16_neon)
},
{
"neon_qasymm8_add_mul_add",
[](const DataTypeISASelectorData & data) { return (data.dt == DataType::QASYMM8); },
REGISTER_QASYMM8_NEON(arm_compute::cpu::add_mul_add_u8_neon)
},
{
"neon_qasymm8_signed_add_mul_add",
[](const DataTypeISASelectorData & data) { return (data.dt == DataType::QASYMM8_SIGNED); },
REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::add_mul_add_s8_neon)
}
#endif // __aarch64__
};
Status validate_arguments(const ITensorInfo *input1, const ITensorInfo *input2,
const ITensorInfo *bn_mul, const ITensorInfo *bn_add,
const ITensorInfo *add_output, const ITensorInfo *final_output,
ConvertPolicy policy, const ActivationLayerInfo &act_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, bn_mul, bn_add, final_output);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(policy != ConvertPolicy::SATURATE, "Only Saturate Policy is supported");
using ActFunction = ActivationLayerInfo::ActivationFunction;
const ActFunction act_func = act_info.activation();
ARM_COMPUTE_RETURN_ERROR_ON_MSG(
(act_func != ActFunction::BOUNDED_RELU && act_func != ActFunction::RELU && act_func != ActFunction::LU_BOUNDED_RELU && act_func != ActFunction::IDENTITY),
"Only RELU Family activations, or no activation, is supported");
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input1);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, input2);
if(is_data_type_quantized(input1->data_type()))
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bn_mul, 1, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bn_add, 1, DataType::F32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, bn_mul);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, bn_add);
}
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input1, input2); // No broadcasting
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mul, bn_add);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(bn_mul->num_dimensions() != 1, "BatchNorm coefficients should be 1D array");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(bn_mul->tensor_shape()[0] != input1->tensor_shape()[0], "First dimensions of inputs and batchNorm coefs should match");
// Validate in case we have add layer's output (intermediate) initialized
if(add_output != nullptr && add_output->total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, add_output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input1, add_output);
}
// Validate in case final output has been initialized
if(final_output->total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, final_output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input1, final_output);
}
const auto uk = CpuAddMulAddKernel::get_implementation<DataTypeISASelectorData>(DataTypeISASelectorData{ input1->data_type(), CPUInfo::get().get_isa() });
ARM_COMPUTE_RETURN_ERROR_ON(uk == nullptr || uk->ukernel == nullptr);
return Status{};
}
} // namespace
void CpuAddMulAddKernel::configure(const ITensorInfo *input1, const ITensorInfo *input2,
const ITensorInfo *bn_mul, const ITensorInfo *bn_add,
ITensorInfo *add_output, ITensorInfo *final_output,
ConvertPolicy policy, const ActivationLayerInfo &act_info)
{
ARM_COMPUTE_UNUSED(bn_mul, bn_add, input2);
ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, bn_add, bn_mul, final_output);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input1, input2, bn_mul, bn_add, add_output, final_output, policy, act_info));
const auto uk = CpuAddMulAddKernel::get_implementation<DataTypeISASelectorData>(DataTypeISASelectorData{ input1->data_type(), CPUInfo::get().get_isa() });
ARM_COMPUTE_ERROR_ON_NULLPTR(uk);
ARM_COMPUTE_ERROR_ON(uk->ukernel == nullptr);
_policy = policy;
_act_info = act_info;
_run_method = uk->ukernel;
_name = std::string("CpuAddMulAddKernel/").append(uk->name);
// Auto initialize outputs if not initialized
set_shape_if_empty(*final_output, input1->tensor_shape());
set_data_type_if_unknown(*final_output, input1->data_type());
if(add_output != nullptr)
{
set_shape_if_empty(*add_output, input1->tensor_shape());
set_data_type_if_unknown(*add_output, input1->data_type());
}
// Configure kernel window
Window win;
win = calculate_max_window(*final_output, Steps());
ICpuKernel::configure(win);
}
Status CpuAddMulAddKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2,
const ITensorInfo *bn_mul, const ITensorInfo *bn_add,
const ITensorInfo *add_output, const ITensorInfo *final_output,
ConvertPolicy policy, const ActivationLayerInfo &act_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, bn_mul, bn_add, final_output);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input1, input2, bn_mul, bn_add, add_output, final_output, policy, act_info));
return Status{};
}
void CpuAddMulAddKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
ARM_COMPUTE_ERROR_ON(tensors.empty());
ARM_COMPUTE_ERROR_ON(_run_method == nullptr);
const ITensor *input1 = tensors.get_const_tensor(TensorType::ACL_SRC_0);
const ITensor *input2 = tensors.get_const_tensor(TensorType::ACL_SRC_1);
const ITensor *bn_mul = tensors.get_const_tensor(TensorType::ACL_SRC_2);
const ITensor *bn_add = tensors.get_const_tensor(TensorType::ACL_SRC_3);
ITensor *add_output = tensors.get_tensor(TensorType::ACL_DST_0);
ITensor *final_output = tensors.get_tensor(TensorType::ACL_DST_1);
_run_method(input1, input2, bn_mul, bn_add, add_output, final_output, _policy, _act_info, window);
}
const char *CpuAddMulAddKernel::name() const
{
return _name.c_str();
}
const std::vector<CpuAddMulAddKernel::AddMulAddKernel> &CpuAddMulAddKernel::get_available_kernels()
{
return available_kernels;
}
} // namespace kernels
} // namespace cpu
} // namespace arm_compute