blob: a95ce0e7d2fd0152ef72837a06bdefea37a630ac [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/convolution/winograd/transforms/output.hpp"
#include "arm_compute/core/NEON/kernels/convolution/winograd/winograd_gemm.hpp"
#include "arm_compute/core/NEON/kernels/convolution/common/arm.hpp"
namespace winograd
{
using Transform = WinogradGEMM<2, 2, 3, 3>::OutputTransform<float>;
template <>
template <>
int Transform::ops_performed(const Tensor4DShape &shape)
{
// NOTE: Cost in FLOPs rather than instructions or uops.
const int tile_M = iceildiv(shape.n_rows, 2);
const int tile_N = iceildiv(shape.n_cols, 2);
return 24 * tile_M * tile_N * shape.n_channels;
}
/* F(2x2, 3x3) constructs 2x2 output tiles from a 3x3 convolution. Since we use
* enough tiles to cover the output space each output tile may contain 0 or 1
* padded values to the right and bottom columns or rows of the tile, e.g.:
*
* ___ ___
* | | | X|
* |___| |__X|
*
* ___ ___
* | | | X|
* |X_X| |X_X|
*
*
* We provide a specialised output transform for each of these instances.
* Consequently we below construct an array of the various padding options, the
* array contains pointers to the specific implementations.
*/
template <>
template <>
template <int pad_bottom, int pad_right>
void Transform::process_tile(
const int n_channels,
const float* const matrix_base,
const int matrix_stride,
const float* const biases,
float* const output,
const int output_row_stride,
const int output_col_stride
)
{
constexpr int cells_i = 2 - pad_bottom;
constexpr int cells_j = 2 - pad_right;
// Construct a map to the output cells
float *outptrs[cells_i][cells_j];
for (int i = 0; i < cells_i; i++)
{
for (int j = 0; j < cells_j; j++)
{
outptrs[i][j] = output + i*output_row_stride + j*output_col_stride;
}
}
const float *inptr = matrix_base;
const float *bptr = biases;
// For each channel of the output
int channels_remaining = n_channels;
#ifdef __aarch64__
for (; channels_remaining >= 4; channels_remaining -= 4)
{
// Matrices used and computed during this transform
float32x4_t F[4][4], FZ[4][2], f[2][2], b;
// Read a 4x4 tile in the Winograd domain
for (int i = 0, m = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++, m++)
{
F[i][j] = vld1q_f32(inptr + m*matrix_stride);
}
}
inptr += 4;
// Compute the matrix F Z
for (int i = 0; i < 4; i++)
{
// FZ[i][0] = F[i][0] + F[i][1] + F[i][2];
FZ[i][0] = vaddq_f32(vaddq_f32(F[i][0], F[i][1]), F[i][2]);
// FZ[i][1] = F[i][1] - F[i][2] - F[i][3];
FZ[i][1] = vsubq_f32(vsubq_f32(F[i][1], F[i][2]), F[i][3]);
}
// Compute the output tile f = ZT F Z
for (int j = 0; j < 2; j++)
{
// f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j];
f[0][j] = vaddq_f32(vaddq_f32(FZ[0][j], FZ[1][j]), FZ[2][j]);
// f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j];
f[1][j] = vsubq_f32(vsubq_f32(FZ[1][j], FZ[2][j]), FZ[3][j]);
}
// Load the bias vector
b = vld1q_f32(bptr);
bptr += 4;
// Write out the output tile
for (int i = 0; i < cells_i; i++)
{
for (int j = 0; j < cells_j; j++)
{
vst1q_f32(outptrs[i][j], vaddq_f32(f[i][j], b));
outptrs[i][j] += 4;
}
}
}
#endif // __aarch64__
#ifdef __arm_any__
for (; channels_remaining >= 2; channels_remaining -= 2)
{
// Matrices used and computed during this transform
float32x2_t F[4][4], FZ[4][2], f[2][2], b;
// Read a 4x4 tile in the Winograd domain
for (int i = 0, m = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++, m++)
{
F[i][j] = vld1_f32(inptr + m*matrix_stride);
}
}
inptr += 2;
// Compute the matrix F Z
for (int i = 0; i < 4; i++)
{
// FZ[i][0] = F[i][0] + F[i][1] + F[i][2];
FZ[i][0] = vadd_f32(vadd_f32(F[i][0], F[i][1]), F[i][2]);
// FZ[i][1] = F[i][1] - F[i][2] - F[i][3];
FZ[i][1] = vsub_f32(vsub_f32(F[i][1], F[i][2]), F[i][3]);
}
// Compute the output tile f = ZT F Z
for (int j = 0; j < 2; j++)
{
// f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j];
f[0][j] = vadd_f32(vadd_f32(FZ[0][j], FZ[1][j]), FZ[2][j]);
// f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j];
f[1][j] = vsub_f32(vsub_f32(FZ[1][j], FZ[2][j]), FZ[3][j]);
}
// Load the bias vector
b = vld1_f32(bptr);
bptr += 2;
// Write out the output tile
for (int i = 0; i < cells_i; i++)
{
for (int j = 0; j < cells_j; j++)
{
vst1_f32(outptrs[i][j], vadd_f32(f[i][j], b));
outptrs[i][j] += 2;
}
}
}
#endif // __arm_any__
for (; channels_remaining; channels_remaining--)
{
// Matrices used and computed during this transform
float F[4][4], FZ[4][2], f[2][2], b;
// Read a 4x4 tile in the Winograd domain
for (int i = 0, m = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++, m++)
{
F[i][j] = *(inptr + m*matrix_stride);
}
}
inptr++;
// Compute the matrix F Z
for (int i = 0; i < 4; i++)
{
FZ[i][0] = F[i][0] + F[i][1] + F[i][2];
FZ[i][1] = F[i][1] - F[i][2] - F[i][3];
}
// Compute the output tile f = ZT F Z
for (int j = 0; j < 2; j++)
{
f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j];
f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j];
}
// Load the bias
b = *(bptr++);
// Write out the output tile
for (int i = 0; i < cells_i; i++)
{
for (int j = 0; j < cells_j; j++)
{
*(outptrs[i][j]++) = f[i][j] + b;
}
}
}
}
template <>
template <>
const Transform::TileFn Transform::tile_fns[max_pad_bottom][max_pad_right] =
{
{
Transform::template process_tile<0, 0>, // No padding
Transform::template process_tile<0, 1>, // Right padding
},
{
Transform::template process_tile<1, 0>, // Bottom padding
Transform::template process_tile<1, 1>, // Bottom and right padding
}
};
template struct WinogradGEMM<2, 2, 3, 3>::OutputTransform<float>;
} // namespace winograd