blob: 4bf5bde61ef58726b8262ceba15ae18b3cb780c1 [file] [log] [blame]
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/KernelDescriptors.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include "src/core/CL/gemm/native/CLGEMMNativeKernelConfiguration.h"
#include "src/core/CL/gemm/reshaped_only_rhs/CLGEMMReshapedOnlyRHSKernelConfiguration.h"
#include "src/core/CL/kernels/CLDepthConvertLayerKernel.h"
#include "src/core/CL/kernels/CLGEMMLowpMatrixMultiplyNativeKernel.h"
#include "src/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel.h"
#include "src/core/CL/kernels/CLGEMMLowpOffsetContributionKernel.h"
#include "src/core/CL/kernels/CLGEMMLowpOffsetContributionOutputStageKernel.h"
#include "src/core/CL/kernels/CLGEMMLowpReductionKernel.h"
#include "src/core/CL/kernels/CLGEMMReshapeRHSMatrixKernel.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/runtime/CL/gemm/CLGEMMKernelSelection.h"
namespace arm_compute
{
using namespace arm_compute::misc::shape_calculator;
using namespace arm_compute::cl_gemm;
namespace
{
inline bool is_gemm_reshaped(unsigned int m, unsigned int n, unsigned int k, DataType data_type, bool reshape_b_only_on_first_run)
{
std::unique_ptr<ICLGEMMKernelSelection> gemm_kernel = CLGEMMKernelSelectionFactory::create(CLScheduler::get().target());
ARM_COMPUTE_ERROR_ON_NULLPTR(gemm_kernel.get());
CLGEMMKernelSelectionParams params;
params.m = m;
params.n = n;
params.k = k;
params.is_rhs_constant = reshape_b_only_on_first_run;
params.data_type = data_type;
switch(gemm_kernel->select_kernel(params))
{
case CLGEMMKernelType::NATIVE:
return false;
case CLGEMMKernelType::RESHAPED_ONLY_RHS:
return true;
default:
ARM_COMPUTE_ERROR("Not supported gemmlowp kernel!");
}
}
} // namespace
CLGEMMLowpMatrixMultiplyCore::CLGEMMLowpMatrixMultiplyCore(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)),
_weights_to_qasymm8(std::make_unique<CLDepthConvertLayerKernel>()),
_mm_native_kernel(std::make_unique<CLGEMMLowpMatrixMultiplyNativeKernel>()),
_mm_reshaped_only_rhs_kernel(std::make_unique<CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel>()),
_mtx_b_reshape_kernel(std::make_unique<CLGEMMReshapeRHSMatrixKernel>()),
_mtx_a_reduction_kernel(std::make_unique<CLGEMMLowpMatrixAReductionKernel>()),
_mtx_b_reduction_kernel(std::make_unique<CLGEMMLowpMatrixBReductionKernel>()),
_offset_contribution_kernel(std::make_unique<CLGEMMLowpOffsetContributionKernel>()),
_offset_contribution_output_stage_kernel(std::make_unique<CLGEMMLowpOffsetContributionOutputStageKernel>()),
_qasymm8_weights(),
_vector_sum_col(),
_vector_sum_row(),
_tmp_b(),
_mm_result_s32(),
_gemm_output_stage_multipliers(),
_gemm_output_stage_shifts(),
_matrix_a(nullptr),
_original_b(nullptr),
_output(nullptr),
_a_offset(0),
_b_offset(0),
_is_gemm_reshaped(true),
_reshape_b_only_on_first_run(false),
_is_prepared(false),
_run_output_stage(false),
_convert_to_qasymm8(false),
_run_offset_contribution(false)
{
}
CLGEMMLowpMatrixMultiplyCore::~CLGEMMLowpMatrixMultiplyCore() = default;
void CLGEMMLowpMatrixMultiplyCore::configure(const ICLTensor *a, const ICLTensor *b, const ICLTensor *c, ICLTensor *output, const GEMMInfo &gemm_info)
{
configure(CLKernelLibrary::get().get_compile_context(), a, b, c, output, gemm_info);
}
void CLGEMMLowpMatrixMultiplyCore::configure(const CLCompileContext &compile_context, const ICLTensor *a, const ICLTensor *b, const ICLTensor *c, ICLTensor *output, const GEMMInfo &gemm_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, output);
ARM_COMPUTE_ERROR_THROW_ON(CLGEMMLowpMatrixMultiplyCore::validate(a->info(), b->info(), c != nullptr ? c->info() : nullptr, output->info(), gemm_info));
_is_prepared = false;
_original_b = b;
_reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run();
_a_offset = a->info()->quantization_info().uniform().offset;
_matrix_a = a;
_output = output;
_convert_to_qasymm8 = is_data_type_quantized_per_channel(b->info()->data_type()) && is_data_type_quantized_symmetric(b->info()->data_type())
&& a->info()->data_type() == DataType::QASYMM8;
_b_offset = _convert_to_qasymm8 ? -128 : b->info()->quantization_info().uniform().offset;
// Get the GPU target
const GPUTarget gpu_target = CLScheduler::get().target();
// Set the target for the kernels
_mm_native_kernel->set_target(gpu_target);
_mm_reshaped_only_rhs_kernel->set_target(gpu_target);
GEMMRHSMatrixInfo rhs_info;
GEMMLHSMatrixInfo lhs_info;
// Arguments used by GEMMReshapeInfo
// If we pass the matrix A and matrix B reshaped to CLGEMMMatrixMultiplyKernel, we need to pass m, n, k, mult_transpose1xW_width and mult_interleave4x4_height to CLGEMMReshapeInfo
// in order to know how the matrices have been reshaped
bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d();
const unsigned int m = reinterpret_input_as_3d ? (a->info()->dimension(1) * a->info()->dimension(2)) : a->info()->dimension(1);
const unsigned int n = b->info()->dimension(0);
const unsigned int k = a->info()->dimension(0);
const unsigned int batch_size = reinterpret_input_as_3d ? a->info()->dimension(3) : a->info()->dimension(2);
const int depth_output_gemm3d = gemm_info.depth_output_gemm3d();
// Check if we need to reshape the matrix A and matrix B
_is_gemm_reshaped = is_gemm_reshaped(m, n, k, a->info()->data_type(), _reshape_b_only_on_first_run);
if(_convert_to_qasymm8)
{
// Set data type for converted weights
TensorInfo weights_info(*b->info());
weights_info.set_data_type(DataType::QASYMM8);
_qasymm8_weights.allocator()->init(weights_info);
_weights_to_qasymm8->configure(compile_context, b, &_qasymm8_weights, ConvertPolicy::WRAP, 0);
}
const ICLTensor *matrix_b = _convert_to_qasymm8 ? &_qasymm8_weights : b;
if(_is_gemm_reshaped)
{
matrix_b = &_tmp_b;
if(!_reshape_b_only_on_first_run)
{
_memory_group.manage(&_tmp_b);
}
// Pick up the GEMM configuration
// Datatype is DataType::QASYMM8 or DataType::QASYMM8_SIGNED doesn't matter, since it only affect the shape configuration
std::tie(lhs_info, rhs_info) = CLGEMMReshapedOnlyRHSKernelConfigurationFactory::create(gpu_target)->configure(m, n, k, batch_size, DataType::QASYMM8);
// Configure reshape RHS kernel
_mtx_b_reshape_kernel->configure(compile_context, _convert_to_qasymm8 ? &_qasymm8_weights : b, &_tmp_b, rhs_info);
}
// Using default reduction info
const GEMMLowpReductionKernelInfo reduction_info {};
// Initialize matrix B reduction kernel only if _a_offset is not equal to 0
if(_a_offset != 0)
{
TensorInfo info_vector_sum_col(compute_reductionA_shape(*b->info()), 1, DataType::S32);
_vector_sum_col.allocator()->init(info_vector_sum_col);
if(!_reshape_b_only_on_first_run)
{
_memory_group.manage(&_vector_sum_col);
}
// Configure Matrix B reduction kernel
_mtx_b_reduction_kernel->configure(compile_context, _convert_to_qasymm8 ? &_qasymm8_weights : b, &_vector_sum_col, reduction_info);
}
// Initialize Matrix A reduction kernel only if _b_offset is not equal to 0
if(_b_offset != 0)
{
TensorInfo info_vector_sum_row(compute_reductionB_shape(*a->info()), 1, DataType::S32);
_vector_sum_row.allocator()->init(info_vector_sum_row);
_memory_group.manage(&_vector_sum_row);
// Configure matrix A reduction kernel
_mtx_a_reduction_kernel->configure(compile_context, a, &_vector_sum_row, reduction_info);
}
GEMMKernelInfo gemm_kernel_info;
gemm_kernel_info.m = m;
gemm_kernel_info.n = n;
gemm_kernel_info.k = k;
gemm_kernel_info.depth_output_gemm3d = depth_output_gemm3d;
gemm_kernel_info.reinterpret_input_as_3d = reinterpret_input_as_3d;
gemm_kernel_info.lhs_info = lhs_info;
gemm_kernel_info.rhs_info = rhs_info;
gemm_kernel_info.a_offset = _a_offset;
gemm_kernel_info.b_offset = _b_offset;
// If GEMMLowpOutputStage != NONE, fuse the offset contribution with the output stage
if(gemm_info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE)
{
// Configure offset contribution kernel
const size_t num_filters = (gemm_info.gemmlowp_output_stage().is_quantized_per_channel) ? gemm_info.gemmlowp_output_stage().gemmlowp_multipliers.size() : 1;
_gemm_output_stage_multipliers.allocator()->init(TensorInfo(TensorShape(num_filters), 1, DataType::S32));
_gemm_output_stage_shifts.allocator()->init(TensorInfo(TensorShape(num_filters), 1, DataType::S32));
GEMMLowpOutputStageInfo gemmlowp_output_stage = gemm_info.gemmlowp_output_stage();
gemmlowp_output_stage.output_data_type = _matrix_a->info()->data_type();
gemm_kernel_info.output_stage = gemmlowp_output_stage;
if(_is_gemm_reshaped && gemmlowp_output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
{
// Configure and tune matrix multiply kernel with fused output stage
_mm_reshaped_only_rhs_kernel->configure(compile_context, _matrix_a, matrix_b, output, gemm_kernel_info, _a_offset == 0 ? nullptr : &_vector_sum_col,
_b_offset == 0 ? nullptr : &_vector_sum_row, c, &_gemm_output_stage_multipliers, &_gemm_output_stage_shifts);
}
else
{
_run_output_stage = true;
_memory_group.manage(&_mm_result_s32);
if(_is_gemm_reshaped)
{
_mm_reshaped_only_rhs_kernel->configure(compile_context, _matrix_a, matrix_b, &_mm_result_s32, gemm_kernel_info);
}
else
{
// Pick up the GEMM configuration
std::tie(lhs_info, rhs_info) = CLGEMMNativeKernelConfigurationFactory::create(gpu_target)->configure(m, n, k, batch_size, DataType::QASYMM8);
// Configure matrix multiply kernel
_mm_native_kernel->configure(compile_context, _matrix_a, matrix_b, &_mm_result_s32, lhs_info, rhs_info, GEMMReshapeInfo(m, n, k, 1, 1, depth_output_gemm3d, reinterpret_input_as_3d));
_offset_contribution_output_stage_kernel->configure(compile_context, &_mm_result_s32, _a_offset == 0 ? nullptr : &_vector_sum_col, _b_offset == 0 ? nullptr : &_vector_sum_row, c, output,
a->info()->dimension(0),
_a_offset, _b_offset, gemmlowp_output_stage, &_gemm_output_stage_multipliers, &_gemm_output_stage_shifts);
_mm_result_s32.allocator()->allocate();
}
}
_gemm_output_stage_multipliers.allocator()->allocate();
_gemm_output_stage_shifts.allocator()->allocate();
// Compute GEMM output multipliers and shifts for output stage
_gemm_output_stage_multipliers.map();
_gemm_output_stage_shifts.map();
std::memcpy(_gemm_output_stage_multipliers.ptr_to_element(Coordinates(0)), gemm_info.gemmlowp_output_stage().gemmlowp_multipliers.data(), num_filters * sizeof(int32_t));
std::memcpy(_gemm_output_stage_shifts.ptr_to_element(Coordinates(0)), gemm_info.gemmlowp_output_stage().gemmlowp_shifts.data(), num_filters * sizeof(int32_t));
_gemm_output_stage_multipliers.unmap();
_gemm_output_stage_shifts.unmap();
}
else
{
_run_offset_contribution = true;
if(_is_gemm_reshaped)
{
// Configure and tune matrix multiply kernel
_mm_reshaped_only_rhs_kernel->configure(compile_context, _matrix_a, matrix_b, output, gemm_kernel_info);
}
else
{
// Pick up the GEMM configuration
std::tie(lhs_info, rhs_info) = CLGEMMNativeKernelConfigurationFactory::create(gpu_target)->configure(m, n, k, batch_size, DataType::QASYMM8);
// Configure matrix multiply kernel
_mm_native_kernel->configure(compile_context, _matrix_a, matrix_b, output, lhs_info, rhs_info, GEMMReshapeInfo(m, n, k, 1, 1, depth_output_gemm3d, reinterpret_input_as_3d));
}
// Configure offset contribution kernel
_offset_contribution_kernel->configure(compile_context, output, _a_offset == 0 ? nullptr : &_vector_sum_col, _b_offset == 0 ? nullptr : &_vector_sum_row, c, a->info()->dimension(0), _a_offset,
_b_offset);
}
// Allocate tensors
if(_is_gemm_reshaped)
{
if(!_reshape_b_only_on_first_run)
{
_tmp_b.allocator()->allocate();
}
}
if(_a_offset != 0 && !_reshape_b_only_on_first_run)
{
_vector_sum_col.allocator()->allocate();
}
if(_b_offset != 0)
{
_vector_sum_row.allocator()->allocate();
}
}
Status CLGEMMLowpMatrixMultiplyCore::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *output, const GEMMInfo &gemm_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(b, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8, DataType::QSYMM8_PER_CHANNEL);
ARM_COMPUTE_RETURN_ERROR_ON(a->data_type() == DataType::QASYMM8 && b->data_type() == DataType::QASYMM8_SIGNED);
ARM_COMPUTE_RETURN_ERROR_ON(a->data_type() == DataType::QASYMM8_SIGNED && b->data_type() == DataType::QASYMM8);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported");
int32_t a_offset = a->quantization_info().uniform().offset;
int32_t b_offset = b->quantization_info().uniform().offset;
const ITensorInfo *matrix_a_info = a;
TensorInfo tmp_b_info{};
GEMMRHSMatrixInfo rhs_info;
GEMMLHSMatrixInfo lhs_info;
// Get the GPU target
const GPUTarget gpu_target = CLScheduler::get().target();
bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d();
const unsigned int m = reinterpret_input_as_3d ? (a->dimension(1) * a->dimension(2)) : a->dimension(1);
const unsigned int n = b->dimension(0);
const unsigned int k = a->dimension(0);
const unsigned int batch_size = reinterpret_input_as_3d ? a->dimension(3) : a->dimension(2);
const int depth_output_gemm3d = gemm_info.depth_output_gemm3d();
bool reshape_matrix_b = is_gemm_reshaped(m, n, k, a->data_type(), gemm_info.reshape_b_only_on_first_run());
const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(m, n, k, 1, 1, depth_output_gemm3d, reinterpret_input_as_3d);
bool convert_to_qasymm8 = is_data_type_quantized_per_channel(b->data_type()) && is_data_type_quantized_symmetric(b->data_type())
&& is_data_type_quantized_asymmetric(a->data_type());
TensorInfo weights_info(*b);
if(convert_to_qasymm8)
{
b_offset = -128;
weights_info.set_data_type(DataType::QASYMM8);
ARM_COMPUTE_RETURN_ON_ERROR(CLDepthConvertLayerKernel::validate(b, &weights_info, ConvertPolicy::WRAP, 0));
}
const ITensorInfo *matrix_b_info = &weights_info;
if(reshape_matrix_b)
{
matrix_b_info = &tmp_b_info;
// Pick up the GEMM configuration
std::tie(lhs_info, rhs_info) = CLGEMMReshapedOnlyRHSKernelConfigurationFactory::create(gpu_target)->configure(m, n, k, batch_size, DataType::QASYMM8);
// Validate reshape RHS kernel
auto_init_if_empty(tmp_b_info, weights_info.clone()->set_tensor_shape(compute_rhs_reshaped_shape(weights_info, rhs_info)));
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMReshapeRHSMatrixKernel::validate(&weights_info, &tmp_b_info, rhs_info));
}
TensorInfo info_vector_sum_col{};
TensorInfo info_vector_sum_row{};
const GEMMLowpReductionKernelInfo reduction_info;
// Validate matrix B reduction kernel only if _a_offset is not equal to 0
if(a_offset != 0)
{
info_vector_sum_col = TensorInfo(compute_reductionA_shape(weights_info), 1, DataType::S32);
// Configure Matrix B reduction kernel
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixBReductionKernel::validate(&weights_info, &info_vector_sum_col, reduction_info));
}
// Validate Matrix A reduction kernel only if _b_offset is not equal to 0
if(b_offset != 0)
{
info_vector_sum_row = TensorInfo(compute_reductionB_shape(*a), 1, DataType::S32);
// Configure matrix A reduction kernel
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixAReductionKernel::validate(a, &info_vector_sum_row, reduction_info));
}
GEMMKernelInfo gemm_kernel_info;
gemm_kernel_info.m = m;
gemm_kernel_info.n = n;
gemm_kernel_info.k = k;
gemm_kernel_info.depth_output_gemm3d = depth_output_gemm3d;
gemm_kernel_info.reinterpret_input_as_3d = reinterpret_input_as_3d;
gemm_kernel_info.lhs_info = lhs_info;
gemm_kernel_info.rhs_info = rhs_info;
gemm_kernel_info.a_offset = a_offset;
gemm_kernel_info.b_offset = b_offset;
if(gemm_info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE)
{
const size_t num_filters = (gemm_info.gemmlowp_output_stage().is_quantized_per_channel) ? gemm_info.gemmlowp_output_stage().gemmlowp_multipliers.size() : 1;
const TensorInfo gemm_output_stage_multipliers_shifts_info(TensorInfo(TensorShape(num_filters), 1, DataType::S32));
GEMMLowpOutputStageInfo gemmlowp_output_stage = gemm_info.gemmlowp_output_stage();
gemmlowp_output_stage.output_data_type = a->data_type();
gemm_kernel_info.output_stage = gemmlowp_output_stage;
if(reshape_matrix_b && gemm_info.gemmlowp_output_stage().type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
{
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel::validate(matrix_a_info, matrix_b_info, output, gemm_kernel_info,
a_offset == 0 ? nullptr : &info_vector_sum_col,
b_offset == 0 ? nullptr : &info_vector_sum_row,
c,
&gemm_output_stage_multipliers_shifts_info,
&gemm_output_stage_multipliers_shifts_info));
}
else
{
TensorInfo mm_result_s32_info{};
if(reshape_matrix_b)
{
// Output tensor auto inizialitation if not yet initialized
auto_init_if_empty(mm_result_s32_info, a->clone()->set_tensor_shape(compute_mm_shape(*matrix_a_info, *matrix_b_info, reshape_info)).set_data_type(DataType::S32));
// Validate matrix multiply
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel::validate(matrix_a_info, matrix_b_info, &mm_result_s32_info, gemm_kernel_info));
}
else
{
// Output tensor auto inizialitation if not yet initialized
auto_init_if_empty(mm_result_s32_info, a->clone()->set_tensor_shape(compute_mm_shape(*matrix_a_info, *matrix_b_info, false, reshape_info)).set_data_type(DataType::S32));
// Pick up the GEMM configuration
std::tie(lhs_info, rhs_info) = CLGEMMNativeKernelConfigurationFactory::create(gpu_target)->configure(m, n, k, batch_size, DataType::QASYMM8);
// Validate matrix multiply
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyNativeKernel::validate(matrix_a_info, matrix_b_info, &mm_result_s32_info, lhs_info, rhs_info, reshape_info));
}
// Validate offset contribution kernel
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpOffsetContributionOutputStageKernel::validate(&mm_result_s32_info,
a_offset == 0 ? nullptr : &info_vector_sum_col,
b_offset == 0 ? nullptr : &info_vector_sum_row,
c,
output,
a_offset, b_offset,
gemmlowp_output_stage,
&gemm_output_stage_multipliers_shifts_info,
&gemm_output_stage_multipliers_shifts_info));
}
}
else
{
if(reshape_matrix_b)
{
// Validate matrix multiply
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel::validate(matrix_a_info, matrix_b_info, output, gemm_kernel_info));
}
else
{
// Pick up the GEMM configuration
std::tie(lhs_info, rhs_info) = CLGEMMNativeKernelConfigurationFactory::create(gpu_target)->configure(m, n, k, batch_size, DataType::QASYMM8);
// Validate matrix multiply
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyNativeKernel::validate(matrix_a_info, matrix_b_info, output, lhs_info, rhs_info, reshape_info));
}
if(output->total_size() != 0)
{
// Validate offset contribution kernel
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpOffsetContributionKernel::validate(output,
a_offset == 0 ? nullptr : &info_vector_sum_col,
b_offset == 0 ? nullptr : &info_vector_sum_row,
c,
a_offset, b_offset));
}
}
return Status{};
}
void CLGEMMLowpMatrixMultiplyCore::run()
{
prepare();
MemoryGroupResourceScope scope_mg(_memory_group);
if(_is_gemm_reshaped)
{
if(!_reshape_b_only_on_first_run)
{
// Run reshape matrix B
CLScheduler::get().enqueue(*_mtx_b_reshape_kernel, false);
}
}
// Run matrix B reduction kernel only if _a_offset is not equal to 0
if(_a_offset != 0 && !_reshape_b_only_on_first_run)
{
CLScheduler::get().enqueue(*_mtx_b_reduction_kernel, false);
}
// Run matrix A reduction kernel only if _b_offset is not equal to 0
if(_b_offset != 0)
{
CLScheduler::get().enqueue(*_mtx_a_reduction_kernel, false);
}
// Run matrix multiply
if(_is_gemm_reshaped)
{
CLScheduler::get().enqueue(*_mm_reshaped_only_rhs_kernel, false);
}
else
{
CLScheduler::get().enqueue(*_mm_native_kernel, false);
}
if(_run_output_stage)
{
// Run offset contribution/output stage kernel
CLScheduler::get().enqueue(*_offset_contribution_output_stage_kernel, true);
}
if(_run_offset_contribution)
{
// Run offset contribution kernel
CLScheduler::get().enqueue(*_offset_contribution_kernel, true);
}
}
void CLGEMMLowpMatrixMultiplyCore::prepare()
{
if(!_is_prepared)
{
if(_convert_to_qasymm8)
{
_qasymm8_weights.allocator()->allocate();
CLScheduler::get().enqueue(*_weights_to_qasymm8, false);
}
if(_is_gemm_reshaped && _reshape_b_only_on_first_run)
{
ARM_COMPUTE_ERROR_ON(!_original_b->is_used());
// Run reshape kernel and mark original weights tensor as unused
_tmp_b.allocator()->allocate();
CLScheduler::get().enqueue(*_mtx_b_reshape_kernel, false);
_original_b->mark_as_unused();
}
// Run matrix B reduction kernel only if _a_offset is not equal to 0
if(_a_offset != 0 && _reshape_b_only_on_first_run)
{
_vector_sum_col.allocator()->allocate();
CLScheduler::get().enqueue(*_mtx_b_reduction_kernel, false);
}
CLScheduler::get().queue().finish();
_is_prepared = true;
}
}
} // namespace arm_compute