blob: 99328deecd7ad3f50b10b235cce1946d05b43766 [file] [log] [blame]
/*
* Copyright (c) 2018-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEReverseKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/NEAsymm.h"
#include "arm_compute/core/NEON/NEFixedPoint.h"
#include "arm_compute/core/NEON/NEMath.h"
#include "arm_compute/core/NEON/wrapper/wrapper.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include <arm_neon.h>
#include <array>
#include <cmath>
#include <map>
namespace arm_compute
{
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *axis)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output, axis);
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8, DataType::S8, DataType::QASYMM8,
DataType::U16, DataType::S16,
DataType::U32, DataType::S32,
DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(axis, 1, DataType::U32);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis->num_dimensions() > 1, "Axis must be a 1D tensor");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis->dimension(0) > 4, "Only up to 4 dimensions can be reversed");
// Checks performed when output is configured
if(output->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(input, output);
}
return Status{};
}
} // namespace
NEReverseKernel::NEReverseKernel()
: _input(nullptr), _output(nullptr), _axis(nullptr)
{
}
void NEReverseKernel::configure(const ITensor *input, ITensor *output, const ITensor *axis)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, axis);
_input = input;
_output = output;
_axis = axis;
// Output tensor auto initialization if not yet initialized
auto_init_if_empty(*output->info(), *input->info()->clone());
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), axis->info()));
// Configure kernel window
INEKernel::configure(calculate_max_window(*output->info()));
}
Status NEReverseKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *axis)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, axis));
return Status{};
}
template <typename T>
void run_reverse(const Window &window, const ITensor *input, const ITensor *axis, ITensor *output)
{
int axis_bit = 0;
for(unsigned int i = 0; i < axis->info()->dimension(0); ++i)
{
const int axis_i = *(reinterpret_cast<const int *>(axis->buffer()) + i);
axis_bit |= 1 << axis_i;
}
// Check if we need a left-over loop for the y dimension
const int window_step_x = 16 / input->info()->element_size();
const int window_start_x = window.x().start();
const int window_end_x = std::min(window.x().end(), static_cast<int>(input->info()->dimension(0)));
const int window_end_x_multiple_of = ((window_end_x - window_start_x) / window_step_x) * window_step_x;
bool left_over_loop_x = (((window_end_x - window_start_x) % window_step_x) != 0);
Window slice = window.first_slice_window_4D();
if(left_over_loop_x)
{
// Check if window_end_y_multiple_of is greater than window_start_y
if(window_end_x_multiple_of > window_start_x)
{
slice.set(Window::DimX, Window::Dimension(window_start_x, window_end_x_multiple_of, window_step_x));
}
else
{
slice.set(Window::DimX, Window::Dimension(0, 0, 1));
}
}
do
{
Iterator input_it(input, slice);
execute_window_loop(slice, [&](const Coordinates & id)
{
auto in = wrapper::vloadq(reinterpret_cast<T *>(input_it.ptr()));
// Reverse 0 axis
if(axis_bit & 0x1)
{
in = wrapper::vrev64(in);
in = wrapper::vcombine(wrapper::vgethigh(in), wrapper::vgetlow(in));
}
const int offset_x = (axis_bit & 0x1) ? output->info()->dimension(0) - id.x() - window_step_x : id.x();
const int offset_y = (axis_bit & 0x2) ? output->info()->dimension(1) - id.y() - 1 : id.y();
const int offset_z = (axis_bit & 0x4) ? output->info()->dimension(2) - id.z() - 1 : id.z();
const int offset_w = (axis_bit & 0x8) ? output->info()->dimension(3) - id[3] - 1 : id[3];
auto out_ptr = reinterpret_cast<T *>(output->ptr_to_element(Coordinates(offset_x, offset_y, offset_z, offset_w)));
wrapper::vstore(out_ptr, in);
},
input_it);
if(left_over_loop_x)
{
slice.set(Window::DimX, Window::Dimension(window_end_x_multiple_of, window_end_x, 1));
Iterator input_it(input, slice);
// Compute left-over elements along the y dimension (1x1)
execute_window_loop(slice, [&](const Coordinates & id)
{
const auto in = *reinterpret_cast<T *>(input_it.ptr());
const int offset_x = (axis_bit & 0x1) ? output->info()->dimension(0) - id.x() - 1 : id.x();
const int offset_y = (axis_bit & 0x2) ? output->info()->dimension(1) - id.y() - 1 : id.y();
const int offset_z = (axis_bit & 0x4) ? output->info()->dimension(2) - id.z() - 1 : id.z();
const int offset_w = (axis_bit & 0x8) ? output->info()->dimension(3) - id[3] - 1 : id[3];
*reinterpret_cast<T *>(output->ptr_to_element(Coordinates(offset_x, offset_y, offset_z, offset_w))) = in;
},
input_it);
}
}
while(window.slide_window_slice_4D(slice));
}
void NEReverseKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
switch(_input->info()->data_type())
{
case DataType::F32:
case DataType::U32:
case DataType::S32:
run_reverse<uint32_t>(window, _input, _axis, _output);
break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::S16:
case DataType::U16:
run_reverse<uint16_t>(window, _input, _axis, _output);
break;
case DataType::QASYMM8:
case DataType::U8:
case DataType::S8:
run_reverse<uint8_t>(window, _input, _axis, _output);
break;
default:
ARM_COMPUTE_ERROR("Data type not supported");
}
}
} // namespace arm_compute