blob: c35037e143aec8e592862fbb96c0a1465cca0f7a [file] [log] [blame]
/*
* Copyright (c) 2017-2019 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "output.hpp"
#include "arm.hpp"
namespace winograd
{
template <>
void OutputTransform<1, 5, 1, 8, float, float, WinogradRoots::Integers>::transform_tile(
const int n_channels,
const float* inptr,
const int matrix_stride,
const float* bptr,
float* const output,
const int, // No need to stride across rows
const int output_col_stride,
const float output_min,
const float output_max
)
{
// Construct a map to the output cells
float *outptrs[output_tile_cols];
for (int j = 0; j < output_tile_cols; j++)
{
outptrs[j] = output + j*output_col_stride;
}
// For each channel of the output
int channels_remaining = n_channels;
#ifdef __arm_any__
for (; channels_remaining >= 4; channels_remaining -= 4)
{
// Matrices used and computed during this transform
float32x4_t F[inner_tile_cols], f[output_tile_cols], b = vdupq_n_f32(0.0f);
// Read a 1x8 tile in the Winograd domain
for (int j = 0; j < inner_tile_cols; j++)
{
F[j] = vld1q_f32(inptr + j*matrix_stride);
}
inptr += 4;
f[0] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(F[6], 1), F[5], 1), F[4], 1), F[3], 1), F[2], 1), F[1], 1), F[0], 1);
f[1] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(F[2], 1), F[6], 3), F[4], 2), F[3], -2), F[5], -3), F[1], -1);
f[2] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(F[2], 1), F[1], 1), F[6], 9), F[5], 9), F[4], 4), F[3], 4);
f[3] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(F[7], 1), F[2], 1), F[6], 27), F[4], 8), F[3], -8), F[5], -27), F[1], -1);
// Write out the output tile
if (bptr != 0)
{
b = vld1q_f32(bptr);
bptr += 4;
}
for (int j = 0; j < output_tile_cols; j++)
{
const auto y =
vmaxq_f32(vminq_f32(vaddq_f32(f[j], b), vdupq_n_f32(output_max)),
vdupq_n_f32(output_min));
vst1q_f32(outptrs[j], y);
outptrs[j] += 4;
}
}
for (; channels_remaining >= 2; channels_remaining -= 2)
{
// Matrices used and computed during this transform
float32x2_t F[inner_tile_cols], f[output_tile_cols], b = vdup_n_f32(0.0f);
// Read a 1x8 tile in the Winograd domain
for (int j = 0; j < inner_tile_cols; j++)
{
F[j] = vld1_f32(inptr + j*matrix_stride);
}
inptr += 2;
f[0] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(F[6], 1), F[5], 1), F[4], 1), F[3], 1), F[2], 1), F[1], 1), F[0], 1);
f[1] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(F[2], 1), F[6], 3), F[4], 2), F[3], -2), F[5], -3), F[1], -1);
f[2] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(F[2], 1), F[1], 1), F[6], 9), F[5], 9), F[4], 4), F[3], 4);
f[3] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(F[7], 1), F[2], 1), F[6], 27), F[4], 8), F[3], -8), F[5], -27), F[1], -1);
// Write out the output tile
if (bptr != 0)
{
b = vld1_f32(bptr);
bptr += 2;
}
for (int j = 0; j < output_tile_cols; j++)
{
const auto y =
vmax_f32(vmin_f32(vadd_f32(f[j], b), vdup_n_f32(output_max)),
vdup_n_f32(output_min));
vst1_f32(outptrs[j], y);
outptrs[j] += 2;
}
}
#endif // __arm_any__
for (; channels_remaining; channels_remaining--)
{
// Matrices used and computed during this transform
float F[inner_tile_cols], f[output_tile_cols], b = 0.0f;
// Read a 1x8 tile in the Winograd domain
for (int j = 0; j < inner_tile_cols; j++)
{
F[j] = *(inptr + j*matrix_stride);
}
inptr++;
f[0] = F[0]*1 + F[1]*1 + F[2]*1 + F[3]*1 + F[4]*1 + F[5]*1 + F[6]*1;
f[1] = F[1]*-1 + F[5]*-3 + F[3]*-2 + F[4]*2 + F[6]*3 + F[2]*1;
f[2] = F[3]*4 + F[4]*4 + F[5]*9 + F[6]*9 + F[1]*1 + F[2]*1;
f[3] = F[1]*-1 + F[5]*-27 + F[3]*-8 + F[4]*8 + F[6]*27 + F[2]*1 + F[7]*1;
// Write out the output tile
if (bptr != 0)
{
b = *(bptr++);
}
for (int j = 0; j < output_tile_cols; j++)
{
const auto y = std::max(std::min(f[j] + b, output_max), output_min);
*(outptrs[j]++) = y;
}
}
}
template class OutputTransform<1, 5, 1, 8, float, float, WinogradRoots::Integers>;
template class OutputTransform<5, 1, 8, 1, float, float, WinogradRoots::Integers>;
} // namespace winograd