blob: 10169a98ab06f157ed11582f21c10a2b6f31b49e [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_ASYMM_HELPER_H
#define ARM_COMPUTE_ASYMM_HELPER_H
// TODO These functions were implemented to be used in softmax-uint8 kernel and therefore process only vectors of length 16.
// But they can be managed to process arbitrary vector length using VEC_DATA_TYPE(int, size) definition to be more reusable.
// Algoriths for these functions were taken from
// https://github.com/google/gemmlowp/blob/master/fixedpoint/fixedpoint.h
// and adapted to operate on integer vectors.
/** For each element of input vector, the corresponding bits of the result item are set
* if the input item is zero.
*
* @param[in] a Input vector whose zero bits define which corresponding bits in result will be set.
*
* @returns Output vector with bits set when corresponding bit in @p a is zero.
*/
inline int16 asymm_mask_if_zero(int16 a)
{
const int16 all_zeros = 0;
const int16 all_ones = ~0;
return select(all_zeros, all_ones, a == 0);
}
/** For each element of input vector, the corresponding bits of the result item are set
* if the input item is non-zero.
*
* @param[in] a Input vector whose non-zero bits define which corresponding bits in result will be set.
*
* @returns Output vector with bits set when corresponding bit in @p a is non zero.
*/
inline int16 asymm_mask_if_non_zero(int16 a)
{
const int16 all_zeros = 0;
const int16 all_ones = ~0;
return select(all_zeros, all_ones, a != 0);
}
/** Each bit of the result is set to the corresponding bit of either then_val or
* else_val depending on whether the corresponding bit of if_mask is set.
* Equivalent to the VBSL instruction in ARM NEON.
*
* @param[in] if_mask Mask defines will bit be taken from @p then_val or @p else_val depending on corresponding bit in mask is set or not.
* @param[in] then_val Value whose bit will be used for result when corresponding bit in @p if_mask is set.
* @param[in] else_val Value whose bit will be used for result when corresponding bit in @p if_mask is not set.
*
* @returns Result contaning bits from @p then_val or from @p else_val depending on corresponding bit in @p if_mask is set or not.
*/
inline int16 asymm_select_using_mask(int16 if_mask, int16 then_val, int16 else_val)
{
return (if_mask & then_val) ^ (~if_mask & else_val);
}
/** Correctly rounded to nearest division by a power of two.
* Also known as a rounding arithmetic right shift.
*
* @param[in] x Value needed to be divided by power of two.
* @param[in] exponent Power of two, must be positive number.
*
* @return Arithmetic right shift.
*/
inline int16 asymm_rounding_divide_by_pow2(int16 x, int exponent)
{
int16 mask = (1 << exponent) - 1;
const int16 zero = 0;
const int16 one = 1;
int16 threshold = (mask >> 1) + select(zero, one, x < 0);
return (x >> exponent) + select(zero, one, (x & mask) > threshold);
}
/** Calculates the product of a integer value by a power of two, with either a positive exponent
* (equivalent to an arithmetic left shift, saturating) or a negative exponent
* (equivalent to an arithmetic right shift, rounding to nearest).
*
* @param[in] x Value needed to be multiplied or divided by power of two depending on sign of @p exponent.
* @param[in] exponent Power of two, can be positive or negative number.
*
* @return Arithmetic left or right shift.
*/
inline int16 asymm_saturating_rounding_mult_by_pow2(int16 x, int exponent)
{
if(exponent < 0)
{
return asymm_rounding_divide_by_pow2(x, -exponent);
}
const int16 min = INT_MIN;
const int16 max = INT_MAX;
int threshold = ((1 << (31 - exponent)) - 1);
int16 positive_mask = asymm_mask_if_non_zero(x > threshold);
int16 negative_mask = asymm_mask_if_non_zero(x < -threshold);
int16 result = x << exponent;
result = asymm_select_using_mask(positive_mask, max, result);
result = asymm_select_using_mask(negative_mask, min, result);
return result;
}
/** Calculates (a+b)/2, rounded to the nearest integer.
* Equivalent to VRHADD in the ARM NEON instruction set.
*
* @param[in] a First term of half-sum.
* @param[in] b Second term of half-sum.
*
* @return (a+b)/2, rounded to the nearest integer.
*/
inline int16 asymm_rounding_half_sum(int16 a, int16 b)
{
long16 a64 = convert_long16(a);
long16 b64 = convert_long16(b);
long16 sum = a64 + b64;
const long16 one = 1;
const long16 minus_one = -1;
long16 sign = select(minus_one, one, sum >= 0);
return convert_int16((sum + sign) / 2);
}
/** Product of two numbers, interpreting them as fixed-point values in the interval [-1, 1),
* rounding to the nearest value, and saturating -1 * -1 to the maximum value.
* This is equivalent to the VQRDMULH instruction in ARM NEON.
*
* @param[in] a First term of product.
* @param[in] b Second term of product.
*
* @return Product of two numbers.
*/
inline int16 asymm_saturating_rounding_doubling_high_mul(int16 a, int16 b)
{
int16 overflow = (a == b) && (a == INT_MIN);
long16 a_64 = convert_long16(a);
long16 b_64 = convert_long16(b);
long16 ab_64 = a_64 * b_64;
long16 mask1 = 1 << 30;
long16 mask2 = 1 - (1 << 30);
long16 nudge = select(mask2, mask1, ab_64 >= 0);
long16 mask = 1ll << 31;
int16 ab_x2_high32 = convert_int16((ab_64 + nudge) / mask);
return select(ab_x2_high32, INT_MAX, overflow);
}
/** Fixed-point multiplication.
*
* @param[in] a Argument 1 in fixed-point format Q(a).
* @param[in] b Argument 2 in fixed-point format Q(b).
*
* @return Result in fixed-point format Q(a+b).
*/
inline int16 asymm_mult(int16 a, int16 b)
{
return asymm_saturating_rounding_doubling_high_mul(a, b);
}
/** Calculates \f$ exp(x) \f$ for x in [-1/4, 0).
*
* @param[in] a Argument in fixed-point format Q0.
*
* @return Result in fixed-point format Q0.
*/
inline int16 asymm_exp_on_interval_between_negative_one_quarter_and_0_excl(int16 a)
{
const int16 constant_term = 1895147668;
const int16 constant_1_over_3 = 715827883;
const int k_fractional_bits = 31;
int16 x = a + (1 << (k_fractional_bits - 3));
int16 x2 = asymm_mult(x, x);
int16 x3 = asymm_mult(x2, x);
int16 x4 = asymm_mult(x2, x2);
int16 x4_over_4 = asymm_rounding_divide_by_pow2(x4, 2);
int16 x4_over_24_plus_x3_over_6_plus_x2 = asymm_mult((x4_over_4 + x3), constant_1_over_3) + x2;
int16 x4_over_24_plus_x3_over_6_plus_x2_over_2 = asymm_rounding_divide_by_pow2(x4_over_24_plus_x3_over_6_plus_x2, 1);
return constant_term + asymm_mult(constant_term, x + x4_over_24_plus_x3_over_6_plus_x2_over_2);
}
/** Calculates \f$ exp(x) \f$ for x < 0.
*
* @param[in] a Argument in fixed-point format Q(k_integer_bits).
* @param[in] k_integer_bits Number of integer bit in argument.
*
* @return Result in fixed-point format Q0.
*/
inline int16 asymm_exp_on_negative_values(int16 a, int k_integer_bits)
{
const int k_fractional_bits = 31 - k_integer_bits;
int16 k_one_quarter = 1 << (k_fractional_bits - 2);
int16 mask = k_one_quarter - 1;
int16 a_mod_quarter_minus_one_quarter = (a & mask) - k_one_quarter;
int16 a_mod_quarter_minus_one_quarter_scaled = a_mod_quarter_minus_one_quarter << k_integer_bits;
int16 result = asymm_exp_on_interval_between_negative_one_quarter_and_0_excl(a_mod_quarter_minus_one_quarter_scaled);
int16 remainder = a_mod_quarter_minus_one_quarter - a;
#define EXP_BARREL_SHIFTER(Exponent, FixedPointMultiplier) \
if(k_integer_bits > Exponent) \
{ \
const int k_shift_amount = k_integer_bits > Exponent ? k_fractional_bits + Exponent : 0; \
result = asymm_select_using_mask( \
asymm_mask_if_non_zero(remainder & (1 << k_shift_amount)), \
asymm_mult(result, FixedPointMultiplier), result); \
}
EXP_BARREL_SHIFTER(-2, 1672461947);
EXP_BARREL_SHIFTER(-1, 1302514674);
EXP_BARREL_SHIFTER(+0, 790015084);
EXP_BARREL_SHIFTER(+1, 290630308);
EXP_BARREL_SHIFTER(+2, 39332535);
EXP_BARREL_SHIFTER(+3, 720401);
EXP_BARREL_SHIFTER(+4, 242);
#undef EXP_BARREL_SHIFTER
if(k_integer_bits > 5)
{
const int16 clamp = -(1 << (k_fractional_bits + 5));
result = asymm_select_using_mask(asymm_mask_if_non_zero(a < clamp), 0, result);
}
const int16 Q0_one = INT_MAX;
return asymm_select_using_mask(asymm_mask_if_zero(a), Q0_one, result);
}
/** Calculates \f$ 1 / (1 + x) \f$ for x in (0, 1).
*
* @param[in] a Argument in fixed-point format Q0.
*
* @return Result in fixed-point format Q0.
*/
inline int16 asymm_one_over_one_plus_x_for_x_in_0_1(int16 a)
{
const int16 Q0_one = INT_MAX;
const int16 Q2_one = 1 << (31 - 2);
int16 half_denominator = asymm_rounding_half_sum(a, Q0_one);
const int16 Q2_48_over_17 = 1515870810;
const int16 Q2_neg_32_over_17 = -1010580540;
int16 x = Q2_48_over_17 + asymm_mult(half_denominator, Q2_neg_32_over_17);
for(int i = 0; i < 3; i++)
{
int16 half_denominator_times_x = asymm_mult(half_denominator, x);
int16 one_minus_half_denominator_times_x = Q2_one - half_denominator_times_x;
int16 tmp = asymm_mult(x, one_minus_half_denominator_times_x);
x = x + asymm_saturating_rounding_mult_by_pow2(tmp, 2);
}
return asymm_saturating_rounding_mult_by_pow2(x, 1);
}
/** Considering the integer value as fixed-point, change the number of integer bits and update value accordingly.
*
* @param[in] value Value to be rescaled.
* @param[in] src_integer_bits Old number of integer bits.
* @param[in] dst_integer_bits New number of integer bits.
*
* @return Rescaled value.
*/
inline int16 asymm_rescale(int16 value, int src_integer_bits, int dst_integer_bits)
{
int exponent = src_integer_bits - dst_integer_bits;
return asymm_saturating_rounding_mult_by_pow2(value, exponent);
}
#endif // ARM_COMPUTE_ASYMM_HELPER_H