blob: a92881320e3ee491d4677b48c7e279750287ef4d [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#include "helpers_asymm.h"
#if defined(COLS_B)
/** This OpenCL kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_8bit and @ref gemm_transpose1x16 before running the matrix multiplication
*
* @attention The number of matrix B columns needs to be passed at compile time using -DCOLS_B
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data type: QASYMM8
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data type: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data type: S32
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemmlowp_mm_interleaved_transposed(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst))
{
// src_addr.s0 = address of matrix A
// src_addr.s1 = address of matrix B
// Compute address for matrix A and B
int2 src_addr = (int2)(get_global_id(1), get_global_id(0)) * (int2)((src0_stride_y),
(src1_stride_y));
// Add offset_first_element_in_bytes
src_addr = src_addr + ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
// Compute end row address for matrix B
int end_row_mtx_b = src_addr.s1 + COLS_B;
// Reset accumulators
int16 c00 = 0;
int16 c10 = 0;
int16 c20 = 0;
int16 c30 = 0;
for(; src_addr.s1 <= (end_row_mtx_b - 32); src_addr += (int2)(8, 32))
{
// Load values from matrix A (interleaved) and matrix B (transposed)
int8 a0 = convert_int8(vload8(0, ((__global uchar *)src0_ptr) + src_addr.s0));
int16 b0 = convert_int16(vload16(0, ((__global uchar *)src1_ptr) + src_addr.s1));
c00 += (int16)a0.s0 * b0;
c10 += (int16)a0.s1 * b0;
c20 += (int16)a0.s2 * b0;
c30 += (int16)a0.s3 * b0;
int16 b1 = convert_int16(vload16(0, ((__global uchar *)src1_ptr) + src_addr.s1 + 16));
c00 += (int16)a0.s4 * b1;
c10 += (int16)a0.s5 * b1;
c20 += (int16)a0.s6 * b1;
c30 += (int16)a0.s7 * b1;
}
for(; src_addr.s1 < end_row_mtx_b; src_addr += (int2)(4, 16))
{
// Load values from matrix A (interleaved) and matrix B (transposed)
int4 a0 = convert_int4(vload4(0, ((__global uchar *)src0_ptr) + src_addr.s0));
int16 b0 = convert_int16(vload16(0, ((__global uchar *)src1_ptr) + src_addr.s1));
c00 += (int16)a0.s0 * b0;
c10 += (int16)a0.s1 * b0;
c20 += (int16)a0.s2 * b0;
c30 += (int16)a0.s3 * b0;
}
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
// Store 4x16 block
vstore16(c00, 0, (__global int *)(offset(&dst, 0, 0)));
vstore16(c10, 0, (__global int *)(offset(&dst, 0, 1)));
vstore16(c20, 0, (__global int *)(offset(&dst, 0, 2)));
vstore16(c30, 0, (__global int *)(offset(&dst, 0, 3)));
}
#endif // defined(COLS_B)
#if defined(NUM_ELEMS_PROCESSED_PER_THREAD_X) && defined(NUM_ELEMS_PROCESSED_PER_THREAD_Y) && defined(COLS_A)
#define VECTOR_UCHAR VEC_DATA_TYPE(uchar, NUM_ELEMS_PROCESSED_PER_THREAD_X)
#define VECTOR_UINT VEC_DATA_TYPE(uint, NUM_ELEMS_PROCESSED_PER_THREAD_X)
#define VECTOR_INT VEC_DATA_TYPE(int, NUM_ELEMS_PROCESSED_PER_THREAD_X)
/** This OpenCL kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1) in case both matrices have not beed reshaped
*
* @attention The number of matrix A columns needs to be passed at compile time using -DCOLS_A
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data type: QASYMM8
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data type: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data type: S32
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemmlowp_mm(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst))
{
int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
// Compute starting address for matrix A and Matrix B
int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
// Update address for the matrix A
src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
// Update address for the matrix B
src_addr.s1 += idx;
int end_row_vec_a = src_addr.s0 + COLS_A;
VECTOR_UINT acc0 = 0;
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
VECTOR_UINT acc1 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
VECTOR_UINT acc2 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
VECTOR_UINT acc3 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
for(; src_addr.s0 <= (end_row_vec_a - 2); src_addr += (int2)(2, 2 * src1_stride_y))
{
// Load values from matrix A
uchar2 a0 = vload2(0, src0_ptr + src_addr.s0 + 0 * src0_stride_y);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
uchar2 a1 = vload2(0, src0_ptr + src_addr.s0 + 1 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
uchar2 a2 = vload2(0, src0_ptr + src_addr.s0 + 2 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
uchar2 a3 = vload2(0, src0_ptr + src_addr.s0 + 3 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
// Load values from matrix B
VECTOR_UCHAR b0 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, src1_ptr + src_addr.s1);
VECTOR_UCHAR b1 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, src1_ptr + src_addr.s1 + src1_stride_y);
// Accumulate
acc0 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a0.s0;
acc0 += CONVERT(b1, VECTOR_UINT) * (VECTOR_UINT)a0.s1;
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a1.s0;
acc1 += CONVERT(b1, VECTOR_UINT) * (VECTOR_UINT)a1.s1;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a2.s0;
acc2 += CONVERT(b1, VECTOR_UINT) * (VECTOR_UINT)a2.s1;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a3.s0;
acc3 += CONVERT(b1, VECTOR_UINT) * (VECTOR_UINT)a3.s1;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(1, src1_stride_y))
{
// Load values from matrix A
uchar a0 = *(src0_ptr + src_addr.s0 + 0 * src0_stride_y);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
uchar a1 = *(src0_ptr + src_addr.s0 + 1 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
uchar a2 = *(src0_ptr + src_addr.s0 + 2 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
uchar a3 = *(src0_ptr + src_addr.s0 + 3 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
// Load values from matrix B
VECTOR_UCHAR b0 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, src1_ptr + src_addr.s1);
// Accumulate
acc0 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a0;
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a1;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a2;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a3;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
// Store the result
VSTORE(NUM_ELEMS_PROCESSED_PER_THREAD_X)
(CONVERT(acc0, VECTOR_INT), 0, (__global int *)(offset(&dst, 0, 0)));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
VSTORE(NUM_ELEMS_PROCESSED_PER_THREAD_X)
(CONVERT(acc1, VECTOR_INT), 0, (__global int *)(offset(&dst, 0, 1)));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
VSTORE(NUM_ELEMS_PROCESSED_PER_THREAD_X)
(CONVERT(acc2, VECTOR_INT), 0, (__global int *)(offset(&dst, 0, 2)));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
VSTORE(NUM_ELEMS_PROCESSED_PER_THREAD_X)
(CONVERT(acc3, VECTOR_INT), 0, (__global int *)(offset(&dst, 0, 3)));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
#endif // defined(NUM_ELEMS_PROCESSED_PER_THREAD_X) && defined(NUM_ELEMS_PROCESSED_PER_THREAD_Y) && defined(COLS_A)
#if defined(COLS_A)
/** OpenCL kernel used to compute the row-vectors of sums of all the entries in each row of Matrix A.
*
* @note This stage is needed to handle the offset of matrix product
* https://github.com/google/gemmlowp/blob/master/doc/low-precision.md
*
* @attention The number of matrix A columns needs to be passed at compile time using -DCOLS_A
*
* @param[in] src_ptr Pointer to the source tensor. Supported data type: QASYMM8
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor Supported data type: S32
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void gemmlowp_matrix_a_reduction(TENSOR3D_DECLARATION(src),
IMAGE_DECLARATION(dst))
{
// Compute source and destination addresses
Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
uint4 sum_row_u32 = (uint4)0;
uint sum_row = 0;
__global const uchar *matrix_a = (__global const uchar *)(src.ptr + get_global_id(0) * src_stride_y + get_global_id(1) * src_stride_z);
int i = 0;
// This for loop performs 16 accumulations
for(; i <= ((int)COLS_A - 16); i += 16)
{
const uchar16 a0_u8 = vload16(0, matrix_a + i);
sum_row_u32 += convert_uint4(a0_u8.s0123) + convert_uint4(a0_u8.s4567) + convert_uint4(a0_u8.s89AB) + convert_uint4(a0_u8.sCDEF);
}
// This for loop performs the leftover accumulations
for(; i < COLS_A; ++i)
{
sum_row += matrix_a[i];
}
sum_row += sum_row_u32.s0 + sum_row_u32.s1 + sum_row_u32.s2 + sum_row_u32.s3;
*((__global int *)dst.ptr) = (int)sum_row;
}
#endif // defined(COLS_A)
#if defined(COLS_B) && defined(ROWS_B)
/** OpenCL kernel used to compute the row-vectors of sums of all the entries in each column of Matrix B.
*
* @note This stage is needed to handle the offset of matrix product
* https://github.com/google/gemmlowp/blob/master/doc/low-precision.md
*
* @attention The number of matrix B columns and rows needs to be passed at compile time using -DCOLS_B and -DROWS_B
*
* @param[in] src_ptr Pointer to the source tensor. Supported data type: QASYMM8
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor Supported data type: S32
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void gemmlowp_matrix_b_reduction(TENSOR3D_DECLARATION(src),
IMAGE_DECLARATION(dst))
{
// Compute source and destination addresses
Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
uint16 sum_col_u32 = (uint16)0;
__global const uchar *matrix_b = (__global const uchar *)(src.ptr + get_global_id(1) * src_stride_z);
int i = 0;
// This for loop performs 4 accumulations
for(; i <= ((int)ROWS_B - 4); i += 4)
{
const uchar16 b0_u8 = vload16(0, matrix_b + 0 * src_stride_y);
const uchar16 b1_u8 = vload16(0, matrix_b + 1 * src_stride_y);
const uchar16 b2_u8 = vload16(0, matrix_b + 2 * src_stride_y);
const uchar16 b3_u8 = vload16(0, matrix_b + 3 * src_stride_y);
sum_col_u32 += convert_uint16(b0_u8) + convert_uint16(b1_u8) + convert_uint16(b2_u8) + convert_uint16(b3_u8);
matrix_b += 4 * src_stride_y;
}
// This for loop perfoms the leftover accumulations
for(; i < (int)ROWS_B; ++i)
{
const uchar16 b0_u8 = vload16(0, matrix_b);
sum_col_u32 += convert_uint16(b0_u8);
matrix_b += src_stride_y;
}
vstore16(convert_int16(sum_col_u32), 0, (__global int *)dst.ptr);
}
#endif // defined(COLS_B) && defined(ROWS_B)
#if defined(K_OFFSET)
/* OpenCL kernel used to add the offset contribution after @ref CLGEMMLowpMatrixMultiplyKernel. The computation is performed in-place
*
* This kernel takes a final int32 accumulator value (the output of @CLGEMMLowpMatrixMultiplyKernel),
* and adds to it the offset contribution of matrix A and matrix B in-place.
*
* @attention The k_offset = a_offset * b_offset * k (where k is the number of matrix A columns) needs to be passed at compile time using -DK_OFFSET (i.e. -DK_OFFSET=1200)
* @note In case the offset contribution due to a_offset is required, a_offset needs to be passed at compile time using -DA_OFFSET (i.e. -DA_OFFSET=1)
* @note In case the offset contribution due to b_offset is required, b_offset needs to be passed at compile time using -DB_OFFSET (i.e. -DB_OFFSET=6)
* @note In case sum_col has batches, -DSUM_COL_HAS_BATCHES must be passed at compile time. Usually if gemmlowp is used to accelerate convolution layer, sum_col will not have batches
*
* The final result is:
*
* mm_result[i][k] = mm_result[i][k] +
* (sum_col[k] * A_OFFSET) +
* (sum_row[i] * B_OFFSET) +
* (K_OFFSET)
*
* @param[in] mm_result_ptr Pointer to the source tensor. Supported data type: S32
* @param[in] mm_result_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] mm_result_step_x mm_result_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] mm_result_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] mm_result_step_y mm_result_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] mm_result_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] mm_result_step_z mm_result_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] mm_result_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] sum_col_result_ptr Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
* @param[in] sum_col_result_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] sum_col_result_step_x sum_col_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] sum_col_result_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] sum_col_result_step_y sum_col_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] sum_col_result_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] sum_row_result_ptr Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
* @param[in] sum_row_result_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] sum_row_result_step_x sum_row_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] sum_row_result_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] sum_row_result_step_y sum_row_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] sum_row_result_offset_first_element_in_bytes The offset of the first element in the source tensor
*/
__kernel void gemmlowp_offset_contribution(TENSOR3D_DECLARATION(mm_result)
#if defined(A_OFFSET)
,
IMAGE_DECLARATION(sum_col)
#endif // defined(A_OFFSET)
#if defined(B_OFFSET)
,
IMAGE_DECLARATION(sum_row)
#endif // defined(B_OFFSET)
)
{
Tensor3D mm_result = CONVERT_TO_TENSOR3D_STRUCT(mm_result);
int16 a_offset_s32 = (int16)0;
int16 b_offset_s32 = (int16)0;
#if defined(A_OFFSET)
Image sum_col = CONVERT_TO_IMAGE_STRUCT(sum_col);
// Compute the offset contribution due to A_OFFSET
#if defined(SUM_COL_HAS_BATCHES)
a_offset_s32 = vload16(0, (__global int *)(sum_col.ptr + get_global_id(2) * sum_col_stride_y));
#else // defined(MATRIX_B_HAS_BATCHES)
a_offset_s32 = vload16(0, (__global int *)(sum_col.ptr));
#endif // defined(MATRIX_B_HAS_BATCHES)
a_offset_s32 *= (int16)A_OFFSET;
#endif // defined(A_OFFSET)
#if defined(B_OFFSET)
Image sum_row = CONVERT_TO_IMAGE_STRUCT(sum_row);
// Compute the offset contribution due to B_OFFSET
b_offset_s32 = (int16) * (((__global int *)(sum_row.ptr + get_global_id(2) * sum_row_stride_y)) + get_global_id(1));
b_offset_s32 *= (int16)B_OFFSET;
#endif // defined(B_OFFSET)
const int16 offset_term_s32 = (int16)K_OFFSET + a_offset_s32 + b_offset_s32;
int16 in_s32 = vload16(0, (__global int *)mm_result.ptr);
// Add the offset terms to GEMM's result
in_s32 += offset_term_s32;
// Store the result with the offset contribution
vstore16(in_s32, 0, (__global int *)mm_result.ptr);
}
#endif // defined(K_OFFSET)
#if defined(RESULT_OFFSET) && defined(RESULT_MULT_INT) && defined(RESULT_SHIFT)
/** This OpenCL kernel is used to quantize down the int32 accumulator values of GEMMLowp to QASYMM8
*
* This kernel takes a final int32 accumulator value and processes it to obtain the final QASYMM8 value.
* The following computations will be performed by the kernel:
*
* -# Add offset terms to final result
* -# Multiply each entry of result by result_mult_int
* -# Add bias to final result (if -DADD_BIAS is passed at compile time)
* -# Shift the int32 accumulator by result_shift
* -# Clamp the value between the specified min and max bounds (if -DMIN_BOUND and/or -DMAX_BOUND are passed at compile time)
* -# Clamp the resulting int32 values to the [0..255] range and cast to QASYMM8.
*
* @attention The offset, scalar scale factor and number of bits to shift right of output tensor must be passed at compile time using -DRESULT_OFFSET, -RESULT_MULT_INT and -DRESULT_SHIFT
*
* @note In case the addition of int32 biases is required, -DADD_BIAS should be passed at compile time
* @note In case the clamping of the result is required, the min and max bounds can be passed at compile time using -DMIN_BOUND and -DMAX_BOUND.
* These values can be used to implement "rectified linear unit" activation functions
*
* @param[in] src_ptr Pointer to the source tensor. Supported data type: S32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] biases_ptr Pointer to the biases tensor. Supported data type: same as @p src_ptr
* @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
* @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
* @param[out] dst_ptr Pointer to the destination tensor Supported data type: QASYMM8
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] dst_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void gemmlowp_output_stage_quantize_down(TENSOR3D_DECLARATION(src),
#if defined(ADD_BIAS)
VECTOR_DECLARATION(biases),
#endif // defined(ADD_BIAS)
TENSOR3D_DECLARATION(dst))
{
// Compute source and destination addresses
Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
#if defined(ADD_BIAS)
Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
#endif // defined(ADD_BIAS)
int16 input_values = vload16(0, (__global int *)src.ptr);
// Add the offset terms to GEMM's result
input_values += (int16)RESULT_OFFSET;
#if defined(ADD_BIAS)
// Add bias
const int16 biases_values = vload16(0, (__global int *)biases.ptr);
input_values += (int16)biases_values;
#endif // defined(ADD_BIAS)
// Multiply by result_mult_int and shift
input_values *= RESULT_MULT_INT;
input_values >>= RESULT_SHIFT;
uchar16 res = convert_uchar16_sat(input_values);
#if defined(MIN_BOUND)
res = max(res, (uchar16)MIN_BOUND);
#endif // defined(MIN_BOUND)
#if defined(MAX_BOUND)
res = min(res, (uchar16)MAX_BOUND);
#endif // defined(MAX_BOUND)
// Store the result
vstore16(res, 0, dst.ptr);
}
#endif // defined(RESULT_OFFSET) && defined(RESULT_MULT_INT) && defined(RESULT_SHIFT)
#if defined(RESULT_OFFSET_AFTER_SHIFT) && defined(RESULT_FIXEDPOINT_MULTIPLIER) && defined(RESULT_SHIFT)
/** This OpenCL kernel is used to quantize down the int32 accumulator values of GEMMLowp to QASYMM8
*
* This kernel takes a final int32 accumulator value (the output of @ref CLGEMMLowpMatrixMultiplyKernel), and processes it to obtain the final QASYMM8 value.
* The following computations will be performed by the kernel:
*
* -# Compute fixed point multiplication between each entry of input by result_fixedpoint_multiplier
* -# Add bias to final result if bias tensor is not a nullptr
* -# Round to nearest division by a power-of-two using result_shift
* -# Add offset to each result
* -# Clamp the value between the specified min and max bounds
* -# Clamp the resulting int32 values to the [0..255] range and cast to QASYMM8.
*
* @attention The offset, scalar scale factor and number of bits to shift right of output tensor must be passed at compile time using -DRESULT_OFFSET, -RESULT_MULT_INT and -DRESULT_SHIFT
*
* @note In case the addition of int32 biases is required, -DADD_BIAS should be passed at compile time
* @note In case the clamping of the result is required, the min and max bounds can be passed at compile time using -DMIN_BOUND and -DMAX_BOUND.
* These values can be used to implement "rectified linear unit" activation functions
*
* @param[in] src_ptr Pointer to the source tensor. Supported data type: S32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] biases_ptr Pointer to the biases tensor. Supported data type: same as @p src_ptr
* @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
* @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
* @param[out] dst_ptr Pointer to the destination tensor Supported data type: QASYMM8
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] dst_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void gemmlowp_output_stage_quantize_down_fixedpoint(TENSOR3D_DECLARATION(src),
#if defined(ADD_BIAS)
VECTOR_DECLARATION(biases),
#endif // defined(ADD_BIAS)
TENSOR3D_DECLARATION(dst))
{
// Compute source and destination addresses
Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
#if defined(ADD_BIAS)
Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
#endif // defined(ADD_BIAS)
int16 input_values = vload16(0, (__global int *)src.ptr);
#if defined(ADD_BIAS)
// Add bias
const int16 biases_values = vload16(0, (__global int *)biases.ptr);
input_values += (int16)biases_values;
#endif // defined(ADD_BIAS)
// Multiply by result_mult_int and shift
input_values = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(input_values, RESULT_FIXEDPOINT_MULTIPLIER, RESULT_SHIFT, 16);
// Add the offset terms to GEMM's result
input_values += (int16)RESULT_OFFSET_AFTER_SHIFT;
uchar16 res = convert_uchar16_sat(input_values);
#if defined(MIN_BOUND)
res = max(res, (uchar16)MIN_BOUND);
#endif // defined(MIN_BOUND)
#if defined(MAX_BOUND)
res = min(res, (uchar16)MAX_BOUND);
#endif // defined(MAX_BOUND)
// Store the result
vstore16(res, 0, dst.ptr);
}
#endif // defined(RESULT_OFFSET_AFTER_SHIFT) && defined(RESULT_FIXEDPOINT_MULTIPLIER) && defined(RESULT_SHIFT)