blob: b0a36ff46a0b94cbf5bcb8bee52bd427f43de09e [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEWinogradLayerKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "support/ToolchainSupport.h"
namespace arm_compute
{
//Batched Gemms
template <int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
NEWinogradLayerKernel<OutputTileRows, OutputTileCols, KernelRows, KernelCols>::NEWinogradLayerKernel()
: _gemms()
{
}
template <int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
void NEWinogradLayerKernel<OutputTileRows, OutputTileCols, KernelRows, KernelCols>::configure(
const unsigned int n_gemms,
const int M, const int K, const int N,
const int a_matrix_stride,
const int a_row_stride,
const int b_matrix_stride,
const int b_row_stride,
const int c_matrix_stride,
const int c_row_stride,
const float *const a_ptr,
const float *const b_ptr,
float *const c_ptr)
{
_gemms = support::cpp14::make_unique<MultiGEMM>(n_gemms, M, K, N, a_matrix_stride, a_row_stride, b_matrix_stride, b_row_stride, c_matrix_stride, c_row_stride, a_ptr, b_ptr, c_ptr);
Window win;
auto win_last = _gemms->get_window();
win.set(Window::DimX, Window::Dimension(0, win_last, 1));
INEKernel::configure(win);
}
template <int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
void NEWinogradLayerKernel<OutputTileRows, OutputTileCols, KernelRows, KernelCols>::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
const size_t first_gemm = window.x().start();
const size_t last_gemm = window.x().end();
_gemms->run(first_gemm, last_gemm);
}
template class NEWinogradLayerKernel<2, 2, 3, 3>;
// Weights transform
template <int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
unsigned int NEWinogradLayerTransformWeightsKernel<OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_weight_storage_size(int n_output_channels, int n_input_channels)
{
const KernelShape shape(n_output_channels, KernelRows, KernelCols, n_input_channels);
return static_cast<unsigned int>(
// WinogradConv returns the size in bytes, we divide by `sizeof(float)` to
// express that in units of float.
WinogradConv::get_kernel_storage_size(shape) / sizeof(float));
}
template <int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
NEWinogradLayerTransformWeightsKernel<OutputTileRows, OutputTileCols, KernelRows, KernelCols>::NEWinogradLayerTransformWeightsKernel()
: _transform()
{
}
template <int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
void NEWinogradLayerTransformWeightsKernel<OutputTileRows, OutputTileCols, KernelRows, KernelCols>::configure(
const ITensor *weights_hwio,
float *const output,
const int matrix_stride, /** Stride across matrices in the output. */
const int n_output_channels, /** Number of filters. */
const int n_input_channels) /** Number of channels in each filter. */
{
const int matrix_row_stride = roundup(n_output_channels, WinogradConv::N_BLOCK);
_transform = support::cpp14::make_unique<WeightsTransform>(reinterpret_cast<float *>(weights_hwio->buffer()), output, matrix_stride, matrix_row_stride, n_output_channels,
n_input_channels);
Window win;
auto win_last = _transform->get_window();
win.set(Window::DimX, Window::Dimension(0, win_last, 1));
INEKernel::configure(win);
}
template <int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
void NEWinogradLayerTransformWeightsKernel<OutputTileRows, OutputTileCols, KernelRows, KernelCols>::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
const size_t fst = window.x().start();
const size_t lst = window.x().end();
_transform->run(fst, lst);
}
template <int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
bool NEWinogradLayerTransformWeightsKernel<OutputTileRows, OutputTileCols, KernelRows, KernelCols>::is_parallelisable() const
{
return false;
}
template class NEWinogradLayerTransformWeightsKernel<2, 2, 3, 3>;
// Input transform
template <int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
unsigned int NEWinogradLayerTransformInputKernel<OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_input_storage_size(
int n_batches, /** Number of batches in the input tensor. */
int n_channels, /** Number of feature maps in the input tensor. */
int n_rows, /** Number of rows in each feature map. */
int n_cols, /** Number of columns in each feature map. */
bool same_padding /** Use "SAME" padding, otherwise use "VALID". */
)
{
// Construct shapes for the input and kernel tensors.
const Tensor4DShape input_shape(n_batches, n_rows, n_cols, n_channels);
const KernelShape kern_shape(1, KernelRows, KernelCols, n_channels);
const PaddingType padding = (same_padding) ? PADDING_SAME : PADDING_VALID;
// Return the size, converted into units of TIn
return static_cast<unsigned int>(
WinogradConv::get_input_storage_size(kern_shape, input_shape, padding) / sizeof(float));
}
template <int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
NEWinogradLayerTransformInputKernel<OutputTileRows, OutputTileCols, KernelRows, KernelCols>::NEWinogradLayerTransformInputKernel()
: _transform()
{
}
template <int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
void NEWinogradLayerTransformInputKernel<OutputTileRows, OutputTileCols, KernelRows, KernelCols>::configure(
const float *const input, /** Input tensor data */
const int n_batches, /** Number of batches in input tensor. */
const int n_rows, /** Number of rows in input tensor. */
const int n_cols, /** Number of columns in input tensor. */
const int n_channels, /** Number of channels in input tensor. */
const PaddingType padding, /** Padding type. */
float *const output, /** Base of output matrices. */
const int matrix_stride) /** Stride between output matrices. */
{
// _input_matrix_row_stride(n_input_channels),
_transform = support::cpp14::make_unique<InputTransform>(input, n_batches, n_rows, n_cols, n_channels, padding, output, matrix_stride, n_channels);
Window win;
auto win_last = _transform->get_window();
win.set(Window::DimX, Window::Dimension(0, win_last, 1));
INEKernel::configure(win);
}
template <int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
void NEWinogradLayerTransformInputKernel<OutputTileRows, OutputTileCols, KernelRows, KernelCols>::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
const size_t fst = window.x().start();
const size_t lst = window.x().end();
_transform->run(fst, lst);
}
template <int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
bool NEWinogradLayerTransformInputKernel<OutputTileRows, OutputTileCols, KernelRows, KernelCols>::is_parallelisable() const
{
return false;
}
template class NEWinogradLayerTransformInputKernel<2, 2, 3, 3>;
// Output transform
template <int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
unsigned int NEWinogradLayerTransformOutputKernel<OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_output_storage_size(
int n_batches, /** Number of batches in the output tensor. */
int n_rows, /** Number of rows in each feature map of the input tensor. */
int n_cols, /** Number of columns in each feature map of the input tensor. */
int n_output_channels, /** Number of feature maps in the output tensor. */
bool same_padding /** Use "SAME" padding, otherwise use "VALID". */
)
{
// Construct shapes for the input and kernel tensors.
const Tensor4DShape input_shape(n_batches, n_rows, n_cols, 1);
const KernelShape kern_shape(n_output_channels, KernelRows, KernelCols, 1);
const PaddingType padding = (same_padding) ? PADDING_SAME : PADDING_VALID;
// Return the size, converted into units of TOut
return static_cast<unsigned int>(
WinogradConv::get_output_storage_size(kern_shape, input_shape, padding) / sizeof(float));
}
template <int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
NEWinogradLayerTransformOutputKernel<OutputTileRows, OutputTileCols, KernelRows, KernelCols>::NEWinogradLayerTransformOutputKernel()
: _biases(nullptr), _output_workspace(nullptr), _matrix_stride(0), _matrix_row_stride(0), _output(nullptr), _n_batches(0), _n_rows(0), _n_cols(0), _n_channels(0)
{
}
template <int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
void NEWinogradLayerTransformOutputKernel<OutputTileRows, OutputTileCols, KernelRows, KernelCols>::configure(
const ITensor *biases,
const float *const output_workingspace,
const int matrix_stride,
float *const output,
const int n_batches,
const int n_rows,
const int n_cols,
const int n_channels)
{
_biases = biases;
_output_workspace = output_workingspace;
_matrix_stride = matrix_stride;
_matrix_row_stride = roundup(n_channels, WinogradConv::N_BLOCK);
_output = output;
_n_batches = n_batches;
_n_rows = n_rows;
_n_cols = n_cols;
_n_channels = n_channels;
// We don't have the biases buffer at this stage as it hasn't been allocated, we pass in nullptr OutputTransform is only used here to compute the window
OutputTransform output_transform(_output_workspace, _matrix_stride, _matrix_row_stride, nullptr, _output, _n_batches, _n_rows, _n_cols, _n_channels);
Window win;
auto win_last = output_transform.get_window();
win.set(Window::DimX, Window::Dimension(0, win_last, 1));
INEKernel::configure(win);
}
template <int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
void NEWinogradLayerTransformOutputKernel<OutputTileRows, OutputTileCols, KernelRows, KernelCols>::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_NULLPTR(_biases->buffer());
ARM_COMPUTE_ERROR_ON_NULLPTR(_output_workspace);
ARM_COMPUTE_ERROR_ON_NULLPTR(_output);
OutputTransform output_transform(_output_workspace, _matrix_stride, _matrix_row_stride,
reinterpret_cast<float *>(_biases->buffer()), _output,
_n_batches, _n_rows, _n_cols, _n_channels);
// The code below cannot be moved to configure because biases hasn't been allocated at that point
const size_t fst = window.x().start();
const size_t lst = window.x().end();
output_transform.run(fst, lst);
}
template <int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
bool NEWinogradLayerTransformOutputKernel<OutputTileRows, OutputTileCols, KernelRows, KernelCols>::is_parallelisable() const
{
return false;
}
template class NEWinogradLayerTransformOutputKernel<2, 2, 3, 3>;
} // namespace arm_compute