blob: 0174d0eed3afdac9626577eb5ecd90fbbf7ad7c7 [file] [log] [blame]
/*
* Copyright (c) 2021-2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/operators/CpuGemmConv2d.h"
#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "src/common/utils/Log.h"
#include "src/core/helpers/MemoryHelpers.h"
#include "src/cpu/kernels/CpuCol2ImKernel.h"
#include "src/cpu/kernels/CpuIm2ColKernel.h"
#include "src/cpu/kernels/CpuReshapeKernel.h"
#include "src/cpu/kernels/CpuWeightsReshapeKernel.h"
#include "src/cpu/operators/CpuGemm.h"
#include "src/cpu/operators/CpuGemmLowpMatrixMultiplyCore.h"
#include "src/cpu/operators/CpuGemmLowpOutputStage.h"
#include "src/cpu/utils/CpuAuxTensorHandler.h"
#include <set>
#include <tuple>
using namespace arm_compute::misc::shape_calculator;
using namespace arm_compute::experimental;
namespace arm_compute
{
namespace cpu
{
CpuGemmConv2d::SkipInfo CpuGemmConv2d::skip_im_col_info(const ITensorInfo *src, const ITensorInfo *weights, const PadStrideInfo &conv_info,
const Size2D &dilation, const ActivationLayerInfo &act_info)
{
const DataLayout data_layout = src->data_layout();
const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
const unsigned int kernel_width = weights->dimension(idx_width);
const unsigned int kernel_height = weights->dimension(idx_height);
unsigned int conv_w = 0;
unsigned int conv_h = 0;
std::tie(conv_w, conv_h) = scaled_dimensions(src->dimension(idx_width),
src->dimension(idx_height),
kernel_width,
kernel_height,
conv_info,
dilation);
const bool skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1);
if(skip_im2col)
{
const bool skip_col2im = (data_layout == DataLayout::NHWC && (bool(CpuGemmConv2d::validate_gemm3d(src, weights, act_info, conv_h, /*skip_im2col*/ true))));
if(skip_col2im)
{
return { true, true };
}
}
else
{
const bool skip_col2im = (data_layout == DataLayout::NHWC && (bool(CpuGemmConv2d::validate_gemm3d(src, weights, act_info, conv_h, /*skip_im2col*/ false))));
if(skip_col2im)
{
return { false, true };
}
}
// Default case when we cannot reinterpret the input and output as 3D.
return { false, false };
}
CpuGemmConv2d::CpuGemmConv2d()
: _weights_reshape_kernel(nullptr), _im2col_kernel(), _mm_gemm(), _mm_gemmlowp(), _col2im_kernel(), _reshape_kernel(), _im2col_output(), _weights_reshaped(), _gemm_output(), _gemm_output_3d(),
_data_layout(DataLayout::NCHW), _skip_im2col(false), _skip_col2im(false), _is_quantized(false), _is_prepared(false), _aux_mem(AuxTensorIdx::Count)
{
}
CpuGemmConv2d::~CpuGemmConv2d() = default;
void CpuGemmConv2d::configure_mm(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const ActivationLayerInfo &act_info,
bool enable_fast_math, int gemm_3d_depth, bool fixed_format, arm_gemm::WeightFormat weight_format)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights);
ARM_COMPUTE_ERROR_THROW_ON(validate_mm(src, weights, biases, dst, act_info, enable_fast_math, gemm_3d_depth, _skip_im2col, fixed_format, weight_format));
// Create GEMMInfo structure
const GEMMInfo &gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */,
gemm_3d_depth, _skip_im2col /* Reinterpret the input as 3D if im2col is skipped */,
false, GEMMLowpOutputStageInfo(), false, enable_fast_math, false, act_info, experimental::PostOpList<ITensorInfo *>(), fixed_format, weight_format);
// Supported activations in GEMM
const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = { ActivationLayerInfo::ActivationFunction::RELU,
ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU
};
if(_is_quantized)
{
TensorInfo tmp_src{ *src };
TensorInfo tmp_weights{ *weights };
// Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
// Extract and negate input and weights offset
const QuantizationInfo iqinfo = src->quantization_info();
const QuantizationInfo wqinfo = weights->quantization_info();
const QuantizationInfo oqinfo = (dst->total_size() == 0) ? iqinfo : dst->quantization_info();
const UniformQuantizationInfo uiqinfo = iqinfo.uniform();
const UniformQuantizationInfo uoqinfo = oqinfo.uniform();
const DataType data_type = src->data_type();
tmp_src.set_quantization_info(QuantizationInfo(uiqinfo.scale, -uiqinfo.offset));
if(!is_data_type_quantized_per_channel(tmp_weights.data_type()))
{
const UniformQuantizationInfo uwqinfo = wqinfo.uniform();
tmp_weights.set_quantization_info(QuantizationInfo(uwqinfo.scale, -uwqinfo.offset));
}
// Merge activation with output stage
PixelValue type_min{};
PixelValue type_max{};
std::tie(type_min, type_max) = get_min_max(data_type);
int32_t min_activation = type_min.get<int32_t>();
int32_t max_activation = type_max.get<int32_t>();
if(supported_acts.count(act_info.activation()) != 0)
{
std::tie(min_activation, max_activation) = get_quantized_activation_min_max(act_info, data_type, uoqinfo);
}
GEMMLowpOutputStageInfo output_info;
output_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
output_info.gemmlowp_offset = uoqinfo.offset;
output_info.gemmlowp_min_bound = min_activation;
output_info.gemmlowp_max_bound = max_activation;
output_info.is_quantized_per_channel = (tmp_weights.data_type() == DataType::QSYMM8_PER_CHANNEL);
quantization::calculate_quantized_multipliers(iqinfo, wqinfo, oqinfo, output_info);
_mm_gemmlowp = std::make_unique<CpuGemmLowpMatrixMultiplyCore>();
_mm_gemmlowp->configure(&tmp_src, &tmp_weights, biases, dst, GEMMInfo(false, false, true, gemm_3d_depth, _skip_im2col, false, output_info, false, enable_fast_math, false, act_info,
experimental::PostOpList<ITensorInfo *>(), fixed_format, weight_format));
auto mm_mem_req = _mm_gemmlowp->workspace();
for(unsigned int cont = 0; cont < mm_mem_req.size(); ++cont)
{
_aux_mem[cont] = mm_mem_req[cont];
}
}
else
{
// Configure matrix multiply function
_mm_gemm = std::make_unique<CpuGemm>();
_mm_gemm->configure(src, weights, biases, dst, 1.0f, 0.0f, gemm_info);
auto mm_mem_req = _mm_gemm->workspace();
for(unsigned int cont = 0; cont < mm_mem_req.size(); ++cont)
{
_aux_mem[cont] = mm_mem_req[cont];
}
}
}
Status CpuGemmConv2d::validate_mm(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst,
const ActivationLayerInfo &act_info, bool enable_fast_math, int gemm_3d_depth, bool skip_im2col, bool fixed_format, arm_gemm::WeightFormat weight_format)
{
const DataType data_type = src->data_type();
const bool is_quantized = is_data_type_quantized_asymmetric(data_type);
const bool is_activation_enabled = act_info.enabled();
// Create GEMMInfo structure
const GEMMInfo gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */,
gemm_3d_depth, skip_im2col /* Reinterpret the input as 3D if im2col is skipped */,
false, GEMMLowpOutputStageInfo(), false, enable_fast_math, false, act_info, experimental::PostOpList<ITensorInfo *>(), fixed_format, weight_format);
if(is_quantized)
{
// Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
// Extract and negate input and weights offset
const QuantizationInfo &iqinfo = src->quantization_info();
const QuantizationInfo &wqinfo = weights->quantization_info();
const QuantizationInfo &oqinfo = (dst->total_size() == 0) ? iqinfo : dst->quantization_info();
const UniformQuantizationInfo uoqinfo = oqinfo.uniform();
// Merge activation with output stage
PixelValue type_min{};
PixelValue type_max{};
std::tie(type_min, type_max) = get_min_max(data_type);
int32_t min_activation = type_min.get<int32_t>();
int32_t max_activation = type_max.get<int32_t>();
const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = { ActivationLayerInfo::ActivationFunction::RELU,
ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU
};
if(is_activation_enabled && supported_acts.count(act_info.activation()) != 0)
{
std::tie(min_activation, max_activation) = get_quantized_activation_min_max(act_info, data_type, uoqinfo);
}
GEMMLowpOutputStageInfo output_info;
output_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
output_info.gemmlowp_offset = uoqinfo.offset;
output_info.gemmlowp_min_bound = min_activation;
output_info.gemmlowp_max_bound = max_activation;
output_info.is_quantized_per_channel = (weights->data_type() == DataType::QSYMM8_PER_CHANNEL);
ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multipliers(iqinfo, wqinfo, oqinfo, output_info));
// Perform validation step on GEMMLowp
std::unique_ptr<ITensorInfo> input_qa = src->clone();
std::unique_ptr<ITensorInfo> weights_qa = weights->clone();
input_qa->set_quantization_info(QuantizationInfo(iqinfo.uniform().scale, -iqinfo.uniform().offset));
weights_qa->set_quantization_info(QuantizationInfo(wqinfo.uniform().scale, -wqinfo.uniform().offset));
return CpuGemmLowpMatrixMultiplyCore::validate(input_qa.get(), weights_qa.get(), biases, dst, GEMMInfo(false, false, true, gemm_3d_depth, skip_im2col, false, output_info, false, enable_fast_math,
false, act_info));
}
else
{
// Perform validation step on Matrix multiply function
return CpuGemm::validate(src, weights, nullptr, dst, 1.0f, 0.0f, gemm_info);
}
}
Status CpuGemmConv2d::validate_gemm3d(const ITensorInfo *input_info, const ITensorInfo *weights_info, const ActivationLayerInfo &act_info, int gemm_3d_depth, bool skip_im2col)
{
const DataType data_type = input_info->data_type();
const unsigned int mult_y = skip_im2col ? 1U : gemm_3d_depth;
const unsigned int mult_z = skip_im2col ? gemm_3d_depth : 1U;
// Set dummy tensor shapes for the validation
const TensorInfo dummy_input_info(TensorShape(4U, 4U * mult_y, 1U * mult_z), 1, data_type, input_info->quantization_info());
const TensorInfo dummy_weights_info(TensorShape(4U, 4U), 1, data_type, weights_info->quantization_info());
const TensorInfo dummy_output_info(TensorShape(4U, 4U, gemm_3d_depth), 1, data_type, input_info->quantization_info());
return validate_mm(&dummy_input_info, &dummy_weights_info, nullptr, &dummy_output_info, act_info, false, gemm_3d_depth, skip_im2col);
}
void CpuGemmConv2d::configure(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const PadStrideInfo &conv_info, const WeightsInfo &weights_info,
const Size2D &dilation, const ActivationLayerInfo &act_info, bool enable_fast_math, unsigned int num_groups)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
ARM_COMPUTE_UNUSED(num_groups, weights_info);
ARM_COMPUTE_ERROR_THROW_ON(CpuGemmConv2d::validate(src,
weights,
biases,
dst,
conv_info,
weights_info,
dilation,
act_info,
enable_fast_math,
num_groups));
ARM_COMPUTE_LOG_PARAMS(src, weights, biases, dst, conv_info, weights_info, dilation, act_info, enable_fast_math, num_groups);
const DataType data_type = src->data_type();
const DataLayout data_layout = src->data_layout();
const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
const int idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
const unsigned int kernel_width = weights->dimension(idx_width);
const unsigned int kernel_height = weights->dimension(idx_height);
_is_prepared = weights_info.retain_internal_weights();
_is_quantized = is_data_type_quantized_asymmetric(src->data_type());
_data_layout = data_layout;
_skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1);
const ITensorInfo *gemm_input_to_use = src;
ITensorInfo *gemm_output_to_use = dst;
// Get convolved dimensions
unsigned int conv_w = 0;
unsigned int conv_h = 0;
std::tie(conv_w, conv_h) = scaled_dimensions(src->dimension(idx_width),
src->dimension(idx_height),
kernel_width,
kernel_height,
conv_info,
dilation);
ARM_COMPUTE_ERROR_ON_MSG((dst->dimension(idx_width) != conv_w) || (dst->dimension(idx_height) != conv_h),
"Output shape does not match the expected one");
// Check if GEMM3D is supported
const CpuGemmConv2d::SkipInfo skip_info = CpuGemmConv2d::skip_im_col_info(src, weights, conv_info, dilation, act_info);
_skip_im2col = skip_info.skip_im2col;
_skip_col2im = skip_info.skip_col2im;
// Get parameters from conv_info
unsigned int stride_x = 0;
unsigned int stride_y = 0;
std::tie(stride_x, stride_y) = conv_info.stride();
unsigned int mat_weights_cols = weights->dimension(idx_kernels);
// _weights_reshaped will be auto configured in the kernel.
// Just append biases and do not transpose 1xW as it will be reshaped in CpuGemm
_weights_reshape_kernel = std::make_unique<kernels::CpuWeightsReshapeKernel>();
_weights_reshape_kernel->configure(weights, nullptr, &_weights_reshaped);
_weights_reshaped.set_quantization_info(weights->quantization_info());
// Create tensor to store im2col reshaped inputs
if(!_skip_im2col)
{
// Configure
_im2col_kernel = std::make_unique<kernels::CpuIm2ColKernel>();
_im2col_kernel->configure(src, &_im2col_output, Size2D(kernel_width, kernel_height), conv_info, false, dilation);
// Update GEMM input
gemm_input_to_use = &_im2col_output;
}
// Create temporary GEMM output tensor in case we cannot skip col2im
const DataType output_data_type = data_type == DataType::BFLOAT16 ? DataType::F32 : data_type;
if(!_skip_col2im)
{
TensorShape shape_gemm;
// Calculate GEMM output shape
shape_gemm = _im2col_output.tensor_shape();
shape_gemm.set(0, mat_weights_cols);
shape_gemm.set(1, conv_w * conv_h);
_gemm_output = TensorInfo(shape_gemm, 1, output_data_type);
_gemm_output.set_quantization_info(dst->quantization_info()).set_data_layout(src->data_layout());
_gemm_output_3d = TensorInfo(_gemm_output);
// Update GEMM output
gemm_output_to_use = &_gemm_output;
}
else
{
_gemm_output_3d = TensorInfo(*dst);
_gemm_output_3d.set_data_type(output_data_type).set_data_layout(src->data_layout()).set_is_resizable(true);
_gemm_output = TensorInfo(_gemm_output_3d);
// Update GEMM output
gemm_output_to_use = &_gemm_output_3d;
}
// Configure GEMM
// In case we need to skip col2im, GEMM3D (gemm_3d_depth != 0) must be called in order to avoid reshaping the output matrix
const unsigned int gemm_3d_depth = _skip_col2im ? conv_h : 0;
const bool fixed_format = weights_info.weight_format() != arm_gemm::WeightFormat::UNSPECIFIED;
configure_mm(gemm_input_to_use, &_weights_reshaped, biases, gemm_output_to_use, act_info, enable_fast_math, gemm_3d_depth, fixed_format, weights_info.weight_format());
if(!_skip_col2im && _data_layout == DataLayout::NCHW)
{
// Configure col2im
_col2im_kernel = std::make_unique<kernels::CpuCol2ImKernel>();
_col2im_kernel->configure(gemm_output_to_use, dst, Size2D(conv_w, conv_h));
}
else
{
// Configure reshape layer
_reshape_kernel = std::make_unique<kernels::CpuReshapeKernel>();
_reshape_kernel->configure(gemm_output_to_use, dst);
}
// Check if GEMM transforms weights
// Modernise through COMPMID-4535
bool gemm_trans_wei = _aux_mem[1].size > 0; // Asm Pretranspose
gemm_trans_wei = _mm_gemm != nullptr ? _aux_mem[3].size > 0 : gemm_trans_wei; // Tranpose RHS
gemm_trans_wei = _mm_gemmlowp != nullptr ? _aux_mem[5].size > 0 : gemm_trans_wei; // Transpose RHS
// Check lifetime
_aux_mem[Im2ColOutput] = MemoryInfo(offset_int_vec(Im2ColOutput), MemoryLifetime::Temporary, _im2col_output.total_size());
_aux_mem[WeightsReshaped] = MemoryInfo(offset_int_vec(WeightsReshaped), gemm_trans_wei ? MemoryLifetime::Prepare : MemoryLifetime::Persistent, _weights_reshaped.total_size());
_aux_mem[GemmOutput] = MemoryInfo(offset_int_vec(GemmOutput), MemoryLifetime::Temporary, _gemm_output.total_size());
}
Status CpuGemmConv2d::has_opt_impl(arm_gemm::WeightFormat &expected_weight_format, const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst,
const PadStrideInfo &conv_info,
const WeightsInfo &weights_info, const Size2D &dilation, const ActivationLayerInfo &act_info, const bool enable_fast_math)
{
const DataLayout data_layout = src->data_layout();
const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
const unsigned int kernel_width = weights->dimension(idx_width);
const unsigned int kernel_height = weights->dimension(idx_height);
unsigned int conv_w = 0;
unsigned int conv_h = 0;
std::tie(conv_w, conv_h) = scaled_dimensions(src->dimension(idx_width),
src->dimension(idx_height),
kernel_width,
kernel_height,
conv_info,
dilation);
const CpuGemmConv2d::SkipInfo skip_info = CpuGemmConv2d::skip_im_col_info(src, weights, conv_info,
dilation, act_info);
const bool skip_im2col = skip_info.skip_im2col;
const bool skip_col2im = skip_info.skip_col2im;
const unsigned int gemm_3d_depth = skip_col2im ? conv_h : 0;
const bool fixed_format = weights_info.weight_format() != arm_gemm::WeightFormat::UNSPECIFIED;
const GEMMInfo gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */,
gemm_3d_depth, skip_im2col /* Reinterpret the input as 3D if im2col is skipped */,
false, GEMMLowpOutputStageInfo(), false, enable_fast_math, false, act_info, experimental::PostOpList<ITensorInfo *>(), fixed_format, weights_info.weight_format());
return CpuGemm::has_opt_impl(expected_weight_format, src, weights, biases, dst, gemm_info);
}
Status CpuGemmConv2d::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const PadStrideInfo &conv_info,
const WeightsInfo &weights_info, const Size2D &dilation, const ActivationLayerInfo &act_info, bool enable_fast_math, unsigned int num_groups)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights_info.are_reshaped(), "Weights already reshaped are not supported!");
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::BFLOAT16, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8_PER_CHANNEL, DataType::BFLOAT16, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src, weights);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(num_groups > 1, "Grouping (num_groups != 1) is not supported");
const DataLayout data_layout = src->data_layout();
const DataType data_type = src->data_type();
const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
const int idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
const int idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
const unsigned int kernel_width = weights->dimension(idx_width);
const unsigned int kernel_height = weights->dimension(idx_height);
TensorInfo im2col_reshaped_info{};
TensorInfo info_gemm{};
TensorInfo tmp_info{};
TensorInfo weights_reshaped_info{};
const ITensorInfo *gemm_input_to_use = src;
const ITensorInfo *gemm_output_to_use = dst;
const ITensorInfo *weights_to_use = weights;
const bool append_bias = false;
const bool is_quantized = is_data_type_quantized_asymmetric(data_type);
const bool is_bf16 = data_type == DataType::BFLOAT16;
// Get convolved dimensions
unsigned int conv_w = 0;
unsigned int conv_h = 0;
std::tie(conv_w, conv_h) = scaled_dimensions(src->dimension(idx_width),
src->dimension(idx_height),
kernel_width,
kernel_height,
conv_info,
dilation);
// Check if GEMM3D is supported
const CpuGemmConv2d::SkipInfo skip_info = CpuGemmConv2d::skip_im_col_info(src, weights, conv_info,
dilation, act_info);
const bool skip_im2col = skip_info.skip_im2col, skip_col2im = skip_info.skip_col2im;
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_channel) != src->dimension(idx_channel));
ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
// Validate biases
if(biases != nullptr)
{
if(is_quantized)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
}
else if(is_bf16)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::F32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, biases);
}
ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != dst->dimension(idx_channel));
ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
}
unsigned int mat_weights_cols = weights->dimension(idx_kernels);
unsigned int mat_weights_rows = weights->dimension(idx_width) * weights->dimension(idx_height) * weights->dimension(idx_channel);
weights_reshaped_info = TensorInfo(compute_weights_reshaped_shape(*weights, append_bias), 1, data_type);
weights_reshaped_info.set_quantization_info(weights->quantization_info());
weights_to_use = &weights_reshaped_info;
if(!skip_im2col)
{
// Create tensor info for im2col reshaped inputs
// For CPU, the batch size is on the fourth dimension
TensorShape shape_im2col = src->tensor_shape();
shape_im2col.set(0, mat_weights_rows);
shape_im2col.set(1, conv_w * conv_h);
shape_im2col.set(2, 1);
im2col_reshaped_info = TensorInfo(shape_im2col, 1, data_type);
im2col_reshaped_info.set_quantization_info(src->quantization_info());
ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuIm2ColKernel::validate(src, &im2col_reshaped_info, Size2D(kernel_width, kernel_height), conv_info, append_bias, dilation, 1));
gemm_input_to_use = &im2col_reshaped_info;
}
// Create temporary GEMM output tensor in case we cannot skip col2im
const DataType output_data_type = data_type == DataType::BFLOAT16 ? DataType::F32 : data_type;
if(!skip_col2im)
{
TensorShape shape_gemm = gemm_input_to_use->tensor_shape();
shape_gemm.set(0, mat_weights_cols);
shape_gemm.set(1, conv_w * conv_h);
info_gemm = TensorInfo(shape_gemm, 1, output_data_type);
}
else
{
info_gemm = TensorInfo(dst->tensor_shape(), 1, output_data_type);
}
info_gemm.set_quantization_info(dst->quantization_info()).set_data_layout(src->data_layout());
gemm_output_to_use = &info_gemm;
const bool fixed_format = weights_info.weight_format() != arm_gemm::WeightFormat::UNSPECIFIED;
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemm_input_to_use, weights_to_use, biases, gemm_output_to_use, act_info, enable_fast_math, skip_col2im ? conv_h : 0, skip_im2col, fixed_format,
weights_info.weight_format()));
// Validate Col2Im/ReshapeLayer
if(!skip_col2im && (data_layout == DataLayout::NCHW))
{
ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuCol2ImKernel::validate(gemm_output_to_use, dst, Size2D(conv_w, conv_h)));
}
return Status{};
}
void CpuGemmConv2d::run(ITensorPack &tensors)
{
prepare(tensors);
auto src = tensors.get_const_tensor(ACL_SRC_0);
auto dst = tensors.get_tensor(ACL_DST);
auto gemm_input_to_use = src;
CpuAuxTensorHandler im2col_output(offset_int_vec(Im2ColOutput), _im2col_output, tensors, false);
CpuAuxTensorHandler gemm_output(offset_int_vec(GemmOutput), _gemm_output, tensors, false);
CpuAuxTensorHandler reshaped_wei(offset_int_vec(WeightsReshaped), _weights_reshaped, tensors, false);
bool out_has_padding = _skip_col2im && (dst->info()->padding().bottom != 0 || dst->info()->padding().top != 0);
if(!_skip_im2col)
{
// Run input reshaping
unsigned int y_dim = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
ITensorPack pack =
{
{ TensorType::ACL_SRC, src },
{ TensorType::ACL_DST, im2col_output.get() }
};
NEScheduler::get().schedule_op(_im2col_kernel.get(), y_dim, _im2col_kernel->window(), pack);
gemm_input_to_use = im2col_output.get();
}
// Handle the case where output has top/bottom padding
const ITensor *out_to_use = out_has_padding ? gemm_output.get() : dst;
Tensor gemm3d;
_gemm_output_3d.extend_padding(out_to_use->info()->padding());
gemm3d.allocator()->soft_init(_gemm_output_3d);
gemm3d.allocator()->import_memory(out_to_use->buffer());
auto gemm_output_to_use = gemm_output.get();
if(_skip_im2col)
{
gemm_output_to_use = &gemm3d;
}
if(_skip_col2im && !out_has_padding)
{
gemm_output_to_use = dst;
}
// Runs CpuGemm or CpuGemmLowpMatrixMultiplyCore functions
ITensorPack pack_mm = tensors;
pack_mm.add_const_tensor(TensorType::ACL_SRC_0, gemm_input_to_use);
if(!this->isVarWeightsKernel())
{
pack_mm.add_const_tensor(TensorType::ACL_SRC_1, reshaped_wei.get());
}
pack_mm.add_tensor(TensorType::ACL_DST, gemm_output_to_use);
if(_is_quantized)
{
// Run gemmlowp
_mm_gemmlowp->run(pack_mm);
}
else
{
// Run gemm
_mm_gemm->run(pack_mm);
}
// Reshape output matrix
if(!_skip_col2im)
{
if(_data_layout == DataLayout::NCHW)
{
ITensorPack pack =
{
{ TensorType::ACL_SRC, gemm_output.get() },
{ TensorType::ACL_DST, dst }
};
NEScheduler::get().schedule_op(_col2im_kernel.get(), Window::DimY, _col2im_kernel->window(), pack);
}
else
{
ITensorPack pack =
{
{ TensorType::ACL_SRC, gemm_output_to_use },
{ TensorType::ACL_DST, dst }
};
NEScheduler::get().schedule_op(_reshape_kernel.get(), Window::DimY, _reshape_kernel->window(), pack);
}
}
else if(out_has_padding)
{
ITensorPack pack =
{
{ TensorType::ACL_SRC, gemm_output_to_use },
{ TensorType::ACL_DST, dst }
};
NEScheduler::get().schedule_op(_reshape_kernel.get(), Window::DimY, _reshape_kernel->window(), pack);
}
}
void CpuGemmConv2d::prepare(ITensorPack &tensors)
{
if(!_is_prepared)
{
// Variable weights executions that use fixed-format kernels
// need no reshaping of the weights.
if(this->isVarWeightsKernel())
{
_is_quantized ? _mm_gemmlowp->prepare(tensors) : _mm_gemm->prepare(tensors);
_is_prepared = true;
return;
}
// Run weights reshaping and mark original weights tensor as unused
CpuAuxTensorHandler weights_reshaped(offset_int_vec(WeightsReshaped), _weights_reshaped, tensors);
auto weights = tensors.get_const_tensor(TensorType::ACL_SRC_1);
ITensorPack pack =
{
{ TensorType::ACL_SRC, weights },
{ TensorType::ACL_DST, weights_reshaped.get() }
};
NEScheduler::get().schedule_op(_weights_reshape_kernel.get(), 3, _weights_reshape_kernel->window(), pack);
weights->mark_as_unused();
ITensorPack gemm_pack = tensors;
gemm_pack.add_const_tensor(TensorType::ACL_SRC_1, weights_reshaped.get());
_is_quantized ? _mm_gemmlowp->prepare(gemm_pack) : _mm_gemm->prepare(gemm_pack);
_is_prepared = true;
}
}
experimental::MemoryRequirements CpuGemmConv2d::workspace() const
{
return _aux_mem;
}
bool CpuGemmConv2d::isVarWeightsKernel() const
{
return _mm_gemm && _mm_gemm->isVarWeightsKernel();
}
} // namespace cpu
} // namespace arm_compute