blob: 80014821548f000b677328c9fc129d2ed563c759 [file] [log] [blame]
/*
* Copyright (c) 2016-2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/kernels/CpuMulKernel.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "src/core/common/Registrars.h"
#include "src/core/CPP/Validate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/core/NEON/NEAsymm.h"
#include "src/core/NEON/NESymm.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include "src/cpu/kernels/mul/generic/neon/list.h"
#include <arm_neon.h>
namespace
{
#if defined(ENABLE_FP32_KERNELS)
static constexpr size_t default_mws_N1_fp32_neon = 22447;
static constexpr size_t default_mws_V1_fp32_neon = 38982;
#endif /* ENABLE_FP32_KERNELS */
static constexpr size_t default_mws_other_platforms_1d_tensor = 10240;
} // namespace
namespace arm_compute
{
namespace cpu
{
namespace kernels
{
namespace
{
const float scale255_constant = 1.f / 255.f;
const float32x4_t scale255_constant_f32q = vdupq_n_f32(scale255_constant);
const float32x4_t positive_round_f32q = vdupq_n_f32(0.5f);
inline Status validate_arguments(const ITensorInfo *src1,
const ITensorInfo *src2,
const ITensorInfo *dst,
float scale,
ConvertPolicy overflow_policy,
RoundingPolicy rounding_policy)
{
ARM_COMPUTE_UNUSED(overflow_policy);
ARM_COMPUTE_UNUSED(rounding_policy);
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src1);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src1, 1, DataType::U8, DataType::QASYMM8,
DataType::QASYMM8_SIGNED, DataType::S16, DataType::S32,
DataType::QSYMM16, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src2, 1, DataType::U8, DataType::QASYMM8,
DataType::QASYMM8_SIGNED, DataType::S16, DataType::S32,
DataType::QSYMM16, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::U8, DataType::QASYMM8,
DataType::QASYMM8_SIGNED, DataType::S16, DataType::QSYMM16,
DataType::S32, DataType::F16, DataType::F32);
if (is_data_type_quantized(src1->data_type()) || is_data_type_quantized(src2->data_type()))
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src1, src2);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(overflow_policy == ConvertPolicy::WRAP,
"ConvertPolicy cannot be WRAP if datatype is quantized");
}
if (dst->total_size() > 0)
{
const TensorShape &out_shape = TensorShape::broadcast_shape(src1->tensor_shape(), src2->tensor_shape());
ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, dst->tensor_shape(), 0),
"Wrong shape for dst");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
// clang-format off
ARM_COMPUTE_RETURN_ERROR_ON_MSG(
!(src1->data_type() == src2->data_type() && src2->data_type() == dst->data_type()) &&
!(src1->data_type() == DataType::U8 && src2->data_type() == DataType::U8 && dst->data_type() == DataType::S16) &&
!(src1->data_type() == DataType::U8 && src2->data_type() == DataType::S16 && dst->data_type() == DataType::S16) &&
!(src1->data_type() == DataType::S16 && src2->data_type() == DataType::U8 && dst->data_type() == DataType::S16) &&
!(src1->data_type() == DataType::S16 && src2->data_type() == DataType::U8 && dst->data_type() == DataType::S16) &&
!(src1->data_type() == DataType::QSYMM16 && src2->data_type() == DataType::QSYMM16 && dst->data_type() == DataType::S32)
, "Invalid data type combination");
// clang-format on
ARM_COMPUTE_RETURN_ERROR_ON_MSG(src1->data_type() == DataType::S16 && dst->data_type() == DataType::S32 &&
scale != 1.f,
"Unsupported scale for QSYMM16 inputs and S32 dst");
}
if (std::abs(scale - scale255_constant) < 0.00001f)
{
ARM_COMPUTE_RETURN_ERROR_ON(rounding_policy != RoundingPolicy::TO_NEAREST_UP &&
rounding_policy != RoundingPolicy::TO_NEAREST_EVEN);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(src1->data_type() == DataType::S32 && src2->data_type() == DataType::S32 &&
dst->data_type() == DataType::S32,
"Scale == 1/255 is not supported if input and dst are of data type S32");
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON(rounding_policy != RoundingPolicy::TO_ZERO);
int exponent = 0;
const float normalized_mantissa = std::frexp(scale, &exponent);
// Use int scaling if factor is equal to 1/2^n for 0 <= n <= 15
// frexp returns 0.5 as mantissa which means that the exponent will be in the range of -1 <= e <= 14
// Moreover, it will be negative as we deal with 1/2^n
ARM_COMPUTE_RETURN_ERROR_ON_MSG(!((normalized_mantissa == 0.5f) && (-14 <= exponent) && (exponent <= 1)),
"Scale value not supported (Should be 1/(2^n) or 1/255");
}
return Status{};
}
/* Scales a given vector by 1/255.
*
* @note This does not work for all cases. e.g. for float of 0.49999999999999994 and large floats.
*
* @param in Input vector to scale.
* @return Scaled dst rounded to nearest (round half up).
*/
inline int32x4_t scale255_S32_S32(int32x4_t in)
{
// Scale
const float32x4_t tmp = vmulq_f32(vcvtq_f32_s32(in), scale255_constant_f32q);
// Round to nearest (round half up)
// Add +0.5 for all values
// Afterwards vcvt rounds toward zero
return vcvtq_s32_f32(vaddq_f32(tmp, positive_round_f32q));
}
inline uint16x8_t scale255_U16_U16(uint16x8_t in)
{
const int32x4_t tmp_s1 = scale255_S32_S32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(in))));
const int32x4_t tmp_s2 = scale255_S32_S32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(in))));
return vreinterpretq_u16_s16(vcombine_s16(vmovn_s32(tmp_s2), vmovn_s32(tmp_s1)));
}
template <typename T>
inline typename std::enable_if<std::is_same<T, int8_t>::value, int8x16_t>::type
vquantize(float32x4x4_t val, const UniformQuantizationInfo &info)
{
return vquantize_signed(val, info);
}
template <typename T>
inline typename std::enable_if<std::is_same<T, uint8_t>::value, uint8x16_t>::type
vquantize(float32x4x4_t val, const UniformQuantizationInfo &info)
{
return vquantize(val, info);
}
template <typename T>
void mul_saturate_quantized_8(const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window, float scale)
{
// Create input windows
Window win = window;
Window input1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(src2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const int window_step_x = 16 / sizeof(T);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const bool is_broadcast_across_x = src1->info()->tensor_shape().x() != src2->info()->tensor_shape().x();
const UniformQuantizationInfo output_qua_info = out->info()->quantization_info().uniform();
const UniformQuantizationInfo tmp_qua_info = {output_qua_info.scale / scale, output_qua_info.offset};
if (is_broadcast_across_x)
{
const bool is_broadcast_input_2 = input2_win.x().step() == 0;
Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
const ITensor *broadcast_tensor = is_broadcast_input_2 ? src2 : src1;
const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? src2 : src1;
const UniformQuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info().uniform();
const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform();
// Clear X Dimension on execution window as we handle manually
non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator broadcast_input(broadcast_tensor, broadcast_win);
Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
Iterator dst(out, win);
using ExactTagType = typename wrapper::traits::neon_vector<T, window_step_x>::tag_type;
execute_window_loop(
win,
[&](const Coordinates &)
{
const auto non_broadcast_input_ptr = reinterpret_cast<const T *>(non_broadcast_input.ptr());
const auto output_ptr = reinterpret_cast<T *>(dst.ptr());
const auto broadcast_value = *reinterpret_cast<const T *>(broadcast_input.ptr());
const auto broadcast_value_vec = wrapper::vdup_n(broadcast_value, ExactTagType{});
// Compute window_step_x elements per iteration
int x = window_start_x;
for (; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto non_broadcast_v = wrapper::vloadq(non_broadcast_input_ptr + x);
// Dequantize inputs
const float32x4x4_t in1_f32x4x4 = vdequantize(non_broadcast_v, non_broadcast_qinfo);
const float32x4x4_t in2_f32x4x4 = vdequantize(broadcast_value_vec, broadcast_qinfo);
const float32x4x4_t out_f32x4x4 = {
vmulq_f32(in1_f32x4x4.val[0], in2_f32x4x4.val[0]),
vmulq_f32(in1_f32x4x4.val[1], in2_f32x4x4.val[1]),
vmulq_f32(in1_f32x4x4.val[2], in2_f32x4x4.val[2]),
vmulq_f32(in1_f32x4x4.val[3], in2_f32x4x4.val[3]),
};
// Quantize dst
const auto result = vquantize<T>(out_f32x4x4, tmp_qua_info);
wrapper::vstore(output_ptr + x, result);
}
// Compute left-over elements
for (; x < window_end_x; ++x)
{
// Dequantize inputs
const T src1 = *(non_broadcast_input_ptr + x);
const float tmp_in1 = Qasymm8QuantizationHelper<T>::dequantize(src1, non_broadcast_qinfo);
const float tmp_in2 = Qasymm8QuantizationHelper<T>::dequantize(broadcast_value, broadcast_qinfo);
const float tmp_f = tmp_in1 * tmp_in2;
// Quantize dst
const auto tmp_qua = Qasymm8QuantizationHelper<T>::quantize(tmp_f, tmp_qua_info);
*(output_ptr + x) = tmp_qua;
}
},
broadcast_input, non_broadcast_input, dst);
}
else
{
const UniformQuantizationInfo input1_qua_info = src1->info()->quantization_info().uniform();
const UniformQuantizationInfo input2_qua_info = src2->info()->quantization_info().uniform();
// Clear X Dimension on execution window as we handle manually
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(src1, input1_win);
Iterator input2(src2, input2_win);
Iterator dst(out, win);
execute_window_loop(
win,
[&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const T *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const T *>(input2.ptr());
const auto output_ptr = reinterpret_cast<T *>(dst.ptr());
// Compute window_step_x elements per iteration
int x = window_start_x;
for (; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto input1_q = wrapper::vloadq(input1_ptr + x);
const auto input2_q = wrapper::vloadq(input2_ptr + x);
// Dequantize inputs
const float32x4x4_t in1_f32x4x4 = vdequantize(input1_q, input1_qua_info);
const float32x4x4_t in2_f32x4x4 = vdequantize(input2_q, input2_qua_info);
const float32x4x4_t out_f32x4x4 = {
vmulq_f32(in1_f32x4x4.val[0], in2_f32x4x4.val[0]),
vmulq_f32(in1_f32x4x4.val[1], in2_f32x4x4.val[1]),
vmulq_f32(in1_f32x4x4.val[2], in2_f32x4x4.val[2]),
vmulq_f32(in1_f32x4x4.val[3], in2_f32x4x4.val[3]),
};
// Quantize dst
const auto result = vquantize<T>(out_f32x4x4, tmp_qua_info);
wrapper::vstore(output_ptr + x, result);
}
// Compute left-over elements
for (; x < window_end_x; ++x)
{
// Dequantize inputs
const T src1 = *(input1_ptr + x);
const T src2 = *(input2_ptr + x);
const float tmp_in1 = Qasymm8QuantizationHelper<T>::dequantize(src1, input1_qua_info);
const float tmp_in2 = Qasymm8QuantizationHelper<T>::dequantize(src2, input2_qua_info);
const float tmp_f = tmp_in1 * tmp_in2;
// Quantize dst
const auto tmp_qua = Qasymm8QuantizationHelper<T>::quantize(tmp_f, tmp_qua_info);
*(output_ptr + x) = tmp_qua;
}
},
input1, input2, dst);
}
}
bool mul_q8_neon_fixedpoint_possible(const ITensorInfo *src0,
const ITensorInfo *src1,
const ITensorInfo *dst,
float scale)
{
const auto iq0 = src0->quantization_info().uniform();
const auto iq1 = src1->quantization_info().uniform();
const auto oq = dst->quantization_info().uniform();
const auto multiplier = ((iq0.scale * iq1.scale) / oq.scale) * scale;
if (multiplier < -8191.f || multiplier > 8191.f)
{
//The multiplier cannot be stored as a 14.18 signed fixed-point number
return false;
}
const auto offset_out = float(oq.offset);
const auto max_result = multiplier * (256) * (256) + offset_out;
if (max_result > 8191.f)
{
//It might not be possible to store the result as a 14.18 signed fixed-point number.
return false;
}
return true;
}
template <typename ScalarType>
void mul_q8_neon_fixedpoint(const ITensor *src0, const ITensor *src1, ITensor *dst, const Window &window, float scale)
{
const auto in0_info = src0->info();
const auto in1_info = src1->info();
const auto &in0_shape = in0_info->tensor_shape();
const auto &in1_shape = in1_info->tensor_shape();
// Create input windows.
Window in0_win = window.broadcast_if_dimension_le_one(in0_shape);
Window in1_win = window.broadcast_if_dimension_le_one(in1_shape);
// Clear the x dimension on the execution window as we process the whole row each iteration.
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
constexpr int window_step_x = 16;
const auto window_start_x = window.x().start();
const auto window_end_x = window.x().end();
const auto is_broadcast_across_x = in0_shape.x() != in1_shape.x();
const auto iq0_info = in0_info->quantization_info().uniform();
const auto iq1_info = in1_info->quantization_info().uniform();
const auto oq_info = dst->info()->quantization_info().uniform();
const auto in0_offset = iq0_info.offset;
const auto in1_offset = iq1_info.offset;
const auto out_offset = oq_info.offset;
const auto multiplier = ((iq0_info.scale * iq1_info.scale) / oq_info.scale) * scale;
constexpr int32_t two_pwr18i = 262144;
constexpr float two_pwr18f = 262144.f;
const auto in0_offset_16p0 = static_cast<int16_t>(in0_offset);
const auto in1_offset_16p0 = static_cast<int16_t>(in1_offset);
const auto out_offset_14p18 = static_cast<int32_t>(out_offset * two_pwr18i);
const auto multiplier_14p18 = static_cast<int32_t>(multiplier * two_pwr18f);
if (is_broadcast_across_x)
{
// Prefix: a = non-broadcast, b = broadcast.
const auto is_broadcast_input_1 = in1_win.x().step() == 0;
auto a_win = is_broadcast_input_1 ? in0_win : in1_win;
auto b_win = is_broadcast_input_1 ? in1_win : in0_win;
const auto a_tensor = is_broadcast_input_1 ? src0 : src1;
const auto b_tensor = is_broadcast_input_1 ? src1 : src0;
const auto a_offset_16p0 = is_broadcast_input_1 ? in0_offset_16p0 : in1_offset_16p0;
const auto b_offset_16p0 = is_broadcast_input_1 ? in1_offset : in0_offset;
#ifndef __aarch64__
const auto a_offset = is_broadcast_input_1 ? in0_offset : in1_offset;
const auto b_offset = is_broadcast_input_1 ? in1_offset : in0_offset;
#endif //__aarch64__
const auto a_voffset_16p0 = wrapper::vdup_n(a_offset_16p0, wrapper::traits::vector_64_tag());
// Clear the x dimension on the execution window as we process the whole row each iteration.
a_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator a_input_it(a_tensor, a_win);
Iterator b_input_it(b_tensor, b_win);
Iterator out_it(dst, win);
execute_window_loop(
win,
[&](const Coordinates &)
{
const auto a_ptr = reinterpret_cast<const ScalarType *>(a_input_it.ptr());
const auto b_ptr = reinterpret_cast<const ScalarType *>(b_input_it.ptr());
const auto out_ptr = reinterpret_cast<ScalarType *>(out_it.ptr());
const auto b_val = *b_ptr;
const auto b_offseted_32p0 = static_cast<int32_t>(b_val - b_offset_16p0);
const auto b_voffseted_32p0 = wrapper::vdup_n(b_offseted_32p0, wrapper::traits::vector_128_tag());
const auto vmultiplier_14p18 = wrapper::vdup_n(multiplier_14p18, wrapper::traits::vector_128_tag());
const auto voffsetout_14p18 = wrapper::vdup_n(out_offset_14p18, wrapper::traits::vector_128_tag());
int x = window_start_x;
for (; x <= (window_end_x - window_step_x); x += window_step_x)
{
// Load the inputs.
const auto a_vin_8p0 = wrapper::vloadq(a_ptr + x);
// Widen the non-broadcast elements to signed 16-bit regardless of the input signedness.
const auto a_vin_16p0_0 = wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(a_vin_8p0)));
const auto a_vin_16p0_1 = wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(a_vin_8p0)));
const auto voffseted_32p0_00 = wrapper::vsubl(wrapper::vgetlow(a_vin_16p0_0), a_voffset_16p0);
const auto voffseted_32p0_01 = wrapper::vsubl(wrapper::vgethigh(a_vin_16p0_0), a_voffset_16p0);
const auto voffseted_32p0_10 = wrapper::vsubl(wrapper::vgetlow(a_vin_16p0_1), a_voffset_16p0);
const auto voffseted_32p0_11 = wrapper::vsubl(wrapper::vgethigh(a_vin_16p0_1), a_voffset_16p0);
const auto vinnermul_32p0_00 = wrapper::vmul(voffseted_32p0_00, b_voffseted_32p0);
const auto vinnermul_32p0_01 = wrapper::vmul(voffseted_32p0_01, b_voffseted_32p0);
const auto vinnermul_32p0_10 = wrapper::vmul(voffseted_32p0_10, b_voffseted_32p0);
const auto vinnermul_32p0_11 = wrapper::vmul(voffseted_32p0_11, b_voffseted_32p0);
const auto vout_14p18_00 = wrapper::vmla(voffsetout_14p18, vinnermul_32p0_00, vmultiplier_14p18);
const auto vout_14p18_01 = wrapper::vmla(voffsetout_14p18, vinnermul_32p0_01, vmultiplier_14p18);
const auto vout_14p18_10 = wrapper::vmla(voffsetout_14p18, vinnermul_32p0_10, vmultiplier_14p18);
const auto vout_14p18_11 = wrapper::vmla(voffsetout_14p18, vinnermul_32p0_11, vmultiplier_14p18);
// These shift rights are to revert the multiplication by twopwr18. Hard limit of a maximum shift by 8 requires multiple shift instructions to achieve this.
const auto vout_15p1_00 = wrapper::vqrshrn_ex<8, ScalarType>(wrapper::vshrq_n<8>(vout_14p18_00));
const auto vout_15p1_01 = wrapper::vqrshrn_ex<8, ScalarType>(wrapper::vshrq_n<8>(vout_14p18_01));
const auto vout_15p1_10 = wrapper::vqrshrn_ex<8, ScalarType>(wrapper::vshrq_n<8>(vout_14p18_10));
const auto vout_15p1_11 = wrapper::vqrshrn_ex<8, ScalarType>(wrapper::vshrq_n<8>(vout_14p18_11));
const auto vout_15p1_0 = wrapper::vcombine(vout_15p1_00, vout_15p1_01);
const auto vout_15p1_1 = wrapper::vcombine(vout_15p1_10, vout_15p1_11);
const auto out_ptr = reinterpret_cast<ScalarType *>(out_it.ptr());
const auto vout_8p0 =
wrapper::vcombine(wrapper::vqrshrn<2>(vout_15p1_0), wrapper::vqrshrn<2>(vout_15p1_1));
wrapper::vstore(out_ptr + x, vout_8p0);
}
//Process the left-over elements.
for (; x < window_end_x; ++x)
{
#ifdef __aarch64__
out_ptr[x] = wrapper::vqrshrn<2>(wrapper::vqrshrn_ex<8, ScalarType>(wrapper::vshrq_n<8>(
(multiplier_14p18 * (int32_t(a_ptr[x]) - a_offset_16p0) * (int32_t(b_val) - b_offset_16p0)) +
out_offset_14p18)));
#else //__aarch64__
out_ptr[x] = utility::clamp<int32_t, ScalarType>(support::cpp11::lround(
multiplier * ((float(a_ptr[x]) - a_offset) * (float(b_val) - b_offset)) + float(out_offset)));
#endif //__aarch64__
}
},
a_input_it, b_input_it, out_it);
}
else
{
const auto voffset0_16p0 = wrapper::vdup_n(in0_offset_16p0, wrapper::traits::vector_64_tag());
const auto voffset1_16p0 = wrapper::vdup_n(in1_offset_16p0, wrapper::traits::vector_64_tag());
const auto voffsetout_14p18 = wrapper::vdup_n(out_offset_14p18, wrapper::traits::vector_128_tag());
const auto vmultiplier_14p18 = wrapper::vdup_n(multiplier_14p18, wrapper::traits::vector_128_tag());
// Clear the x dimension on the execution window as we process the whole row each iteration.
in0_win.set(Window::DimX, Window::Dimension(0, 1, 1));
in1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator in0_it(src0, in0_win);
Iterator in1_it(src1, in1_win);
Iterator out_it(dst, win);
execute_window_loop(
win,
[&](const Coordinates &)
{
const auto in0_ptr = reinterpret_cast<const ScalarType *>(in0_it.ptr());
const auto in1_ptr = reinterpret_cast<const ScalarType *>(in1_it.ptr());
const auto out_ptr = reinterpret_cast<ScalarType *>(out_it.ptr());
int x = window_start_x;
for (; x <= (window_end_x - window_step_x); x += window_step_x)
{
// Load the inputs.
const auto vin0_8p0 = wrapper::vloadq(in0_ptr + x);
const auto vin1_8p0 = wrapper::vloadq(in1_ptr + x);
// Widen the input elements to signed 16-bit regardless of the input signedness.
const auto vin0_16p0_0 = wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(vin0_8p0)));
const auto vin0_16p0_1 = wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(vin0_8p0)));
const auto vin1_16p0_0 = wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(vin1_8p0)));
const auto vin1_16p0_1 = wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(vin1_8p0)));
const auto voffseted0_32p0_00 = wrapper::vsubl(wrapper::vgetlow(vin0_16p0_0), voffset0_16p0);
const auto voffseted0_32p0_01 = wrapper::vsubl(wrapper::vgethigh(vin0_16p0_0), voffset0_16p0);
const auto voffseted0_32p0_10 = wrapper::vsubl(wrapper::vgetlow(vin0_16p0_1), voffset0_16p0);
const auto voffseted0_32p0_11 = wrapper::vsubl(wrapper::vgethigh(vin0_16p0_1), voffset0_16p0);
const auto voffseted1_32p0_00 = wrapper::vsubl(wrapper::vgetlow(vin1_16p0_0), voffset1_16p0);
const auto voffseted1_32p0_01 = wrapper::vsubl(wrapper::vgethigh(vin1_16p0_0), voffset1_16p0);
const auto voffseted1_32p0_10 = wrapper::vsubl(wrapper::vgetlow(vin1_16p0_1), voffset1_16p0);
const auto voffseted1_32p0_11 = wrapper::vsubl(wrapper::vgethigh(vin1_16p0_1), voffset1_16p0);
const auto vinnermul_32p0_00 = wrapper::vmul(voffseted0_32p0_00, voffseted1_32p0_00);
const auto vinnermul_32p0_01 = wrapper::vmul(voffseted0_32p0_01, voffseted1_32p0_01);
const auto vinnermul_32p0_10 = wrapper::vmul(voffseted0_32p0_10, voffseted1_32p0_10);
const auto vinnermul_32p0_11 = wrapper::vmul(voffseted0_32p0_11, voffseted1_32p0_11);
const auto vout_14p18_00 = wrapper::vmla(voffsetout_14p18, vinnermul_32p0_00, vmultiplier_14p18);
const auto vout_14p18_01 = wrapper::vmla(voffsetout_14p18, vinnermul_32p0_01, vmultiplier_14p18);
const auto vout_14p18_10 = wrapper::vmla(voffsetout_14p18, vinnermul_32p0_10, vmultiplier_14p18);
const auto vout_14p18_11 = wrapper::vmla(voffsetout_14p18, vinnermul_32p0_11, vmultiplier_14p18);
// These shift rights are to revert the multiplication by twopwr18. Hard limit of a maximum shift by 8 requires multiple shift instructions to achieve this.
const auto vout_14p2_00 = wrapper::vqrshrn_ex<8, ScalarType>(wrapper::vshrq_n<8>(vout_14p18_00));
const auto vout_14p2_01 = wrapper::vqrshrn_ex<8, ScalarType>(wrapper::vshrq_n<8>(vout_14p18_01));
const auto vout_14p2_10 = wrapper::vqrshrn_ex<8, ScalarType>(wrapper::vshrq_n<8>(vout_14p18_10));
const auto vout_14p2_11 = wrapper::vqrshrn_ex<8, ScalarType>(wrapper::vshrq_n<8>(vout_14p18_11));
const auto vout_14p2_0 = wrapper::vcombine(vout_14p2_00, vout_14p2_01);
const auto vout_14p2_1 = wrapper::vcombine(vout_14p2_10, vout_14p2_11);
const auto vout_8p0 =
wrapper::vcombine(wrapper::vqrshrn<2>(vout_14p2_0), wrapper::vqrshrn<2>(vout_14p2_1));
wrapper::vstore(out_ptr + x, vout_8p0);
}
//Process the left-over elements.
for (; x < window_end_x; ++x)
{
#ifdef __aarch64__
out_ptr[x] = wrapper::vqrshrn<2>(wrapper::vqrshrn_ex<8, ScalarType>(
wrapper::vshrq_n<8>((multiplier_14p18 * (int32_t(in0_ptr[x]) - in0_offset_16p0) *
(int32_t(in1_ptr[x]) - in1_offset_16p0)) +
out_offset_14p18)));
#else //__aarch64__
out_ptr[x] = utility::clamp<int32_t, ScalarType>(support::cpp11::lround(
multiplier * ((float(in0_ptr[x]) - in0_offset) * (float(in1_ptr[x]) - in1_offset)) +
float(out_offset)));
#endif //__aarch64__
}
},
in0_it, in1_it, out_it);
}
}
void mul_saturate_QSYMM16_QSYMM16_QSYMM16(
const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window, float scale)
{
const UniformQuantizationInfo input1_qua_info = src1->info()->quantization_info().uniform();
const UniformQuantizationInfo input2_qua_info = src2->info()->quantization_info().uniform();
const UniformQuantizationInfo output_qua_info = out->info()->quantization_info().uniform();
// Create input windows
Window win = window;
Window input1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(src2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
win.set(Window::DimX, Window::Dimension(0, 1, 1));
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(src1, input1_win);
Iterator input2(src2, input2_win);
Iterator dst(out, win);
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const UniformQuantizationInfo tmp_qua_info = {output_qua_info.scale / scale, output_qua_info.offset};
execute_window_loop(
win,
[&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const qsymm16_t *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const qsymm16_t *>(input2.ptr());
const auto output_ptr = reinterpret_cast<qsymm16_t *>(dst.ptr());
// Compute window_step_x elements per iteration
int x = window_start_x;
for (; x <= (window_end_x - window_step_x); x += window_step_x)
{
const qsymm16x8x2_t input1_q = {{
vld1q_s16(input1_ptr + x),
vld1q_s16(input1_ptr + x + 8),
}};
const qsymm16x8x2_t input2_q = {{
vld1q_s16(input2_ptr + x),
vld1q_s16(input2_ptr + x + 8),
}};
// Dequantize inputs
const float32x4x4_t in1_f32x4x4 = vdequantize(input1_q, input1_qua_info);
const float32x4x4_t in2_f32x4x4 = vdequantize(input2_q, input2_qua_info);
const float32x4x4_t out_f32x4x4 = {
vmulq_f32(in1_f32x4x4.val[0], in2_f32x4x4.val[0]),
vmulq_f32(in1_f32x4x4.val[1], in2_f32x4x4.val[1]),
vmulq_f32(in1_f32x4x4.val[2], in2_f32x4x4.val[2]),
vmulq_f32(in1_f32x4x4.val[3], in2_f32x4x4.val[3]),
};
const qsymm16x8x2_t result = vquantize_qsymm16(out_f32x4x4, tmp_qua_info);
vst1q_s16(output_ptr + x, result.val[0]);
vst1q_s16(output_ptr + x + 8, result.val[1]);
}
// Compute left-over elements
for (; x < window_end_x; ++x)
{
// Dequantize inputs
float tmp_in1 = static_cast<float>(*(input1_ptr + x)) * input1_qua_info.scale;
float tmp_in2 = static_cast<float>(*(input2_ptr + x)) * input2_qua_info.scale;
float tmp_f = tmp_in1 * tmp_in2;
// Quantize dst, lrintf() has same rounding mode as vcombine_s16
int32_t tmp = lrintf(tmp_f / tmp_qua_info.scale);
qsymm16_t tmp_qua =
static_cast<qsymm16_t>(tmp > SHRT_MAX) ? SHRT_MAX : ((tmp < SHRT_MIN) ? SHRT_MIN : tmp);
*(output_ptr + x) = tmp_qua;
}
},
input1, input2, dst);
}
void mul_QSYMM16_QSYMM16_S32(const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window, int scale)
{
ARM_COMPUTE_UNUSED(scale);
// Create input windows
Window win = window;
Window input1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(src2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
win.set(Window::DimX, Window::Dimension(0, 1, 1));
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(src1, input1_win);
Iterator input2(src2, input2_win);
Iterator dst(out, win);
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
execute_window_loop(
win,
[&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const qsymm16_t *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const qsymm16_t *>(input2.ptr());
const auto output_ptr = reinterpret_cast<int32_t *>(dst.ptr());
// Compute window_step_x elements per iteration
int x = window_start_x;
for (; x <= (window_end_x - window_step_x); x += window_step_x)
{
const qsymm16x8x2_t input1_q = {{
vld1q_s16(input1_ptr + x),
vld1q_s16(input1_ptr + x + 8),
}};
const qsymm16x8x2_t input2_q = {{
vld1q_s16(input2_ptr + x),
vld1q_s16(input2_ptr + x + 8),
}};
const int32x4x4_t in1_s32 = {{
vmovl_s16(vget_low_s16(input1_q.val[0])),
vmovl_s16(vget_high_s16(input1_q.val[0])),
vmovl_s16(vget_low_s16(input1_q.val[1])),
vmovl_s16(vget_high_s16(input1_q.val[1])),
}};
const int32x4x4_t in2_s32 = {{
vmovl_s16(vget_low_s16(input2_q.val[0])),
vmovl_s16(vget_high_s16(input2_q.val[0])),
vmovl_s16(vget_low_s16(input2_q.val[1])),
vmovl_s16(vget_high_s16(input2_q.val[1])),
}};
const int32x4x4_t result = {{
vmulq_s32(in1_s32.val[0], in2_s32.val[0]),
vmulq_s32(in1_s32.val[1], in2_s32.val[1]),
vmulq_s32(in1_s32.val[2], in2_s32.val[2]),
vmulq_s32(in1_s32.val[3], in2_s32.val[3]),
}};
vst1q_s32(output_ptr + x, result.val[0]);
vst1q_s32(output_ptr + x + 4, result.val[1]);
vst1q_s32(output_ptr + x + 8, result.val[2]);
vst1q_s32(output_ptr + x + 12, result.val[3]);
}
// Compute left-over elements
for (; x < window_end_x; ++x)
{
int32_t tmp = static_cast<int32_t>(*(input1_ptr + x)) * static_cast<int32_t>(*(input2_ptr + x));
*(output_ptr + x) = tmp;
}
},
input1, input2, dst);
}
template <bool is_scale255, bool is_sat>
void mul_U8_U8_U8(const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window, int n)
{
// Create input windows
Window win = window;
Window input1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(src2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
win.set(Window::DimX, Window::Dimension(0, 1, 1));
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(src1, input1_win);
Iterator input2(src2, input2_win);
Iterator dst(out, win);
const int window_step_x = 16 / sizeof(uint8_t);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
execute_window_loop(
win,
[&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const uint8_t *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
const auto output_ptr = reinterpret_cast<uint8_t *>(dst.ptr());
// Compute window_step_x elements per iteration
int x = window_start_x;
for (; x <= (window_end_x - window_step_x); x += window_step_x)
{
const uint8x16_t ta1 = wrapper::vloadq(input1_ptr + x);
const uint8x16_t ta2 = wrapper::vloadq(input2_ptr + x);
uint16x8_t tmp1_high = vmovl_u8(vget_high_u8(ta1));
const uint16x8_t tmp2_high = vmovl_u8(vget_high_u8(ta2));
uint16x8_t tmp1_low = vmovl_u8(vget_low_u8(ta1));
const uint16x8_t tmp2_low = vmovl_u8(vget_low_u8(ta2));
tmp1_high = vmulq_u16(tmp1_high, tmp2_high);
tmp1_low = vmulq_u16(tmp1_low, tmp2_low);
if (is_scale255)
{
tmp1_high = scale255_U16_U16(tmp1_high);
tmp1_low = scale255_U16_U16(tmp1_low);
}
else
{
const int16x8_t vn = vdupq_n_s16(-n);
if (is_sat)
{
tmp1_high = vqshlq_u16(tmp1_high, vn);
tmp1_low = vqshlq_u16(tmp1_low, vn);
}
else
{
tmp1_high = vshlq_u16(tmp1_high, vn);
tmp1_low = vshlq_u16(tmp1_low, vn);
}
}
if (is_sat)
{
vst1q_u8(output_ptr + x, vcombine_u8(vqmovn_u16(tmp1_low), vqmovn_u16(tmp1_high)));
}
else
{
vst1q_u8(output_ptr + x, vcombine_u8(vmovn_u16(tmp1_low), vmovn_u16(tmp1_high)));
}
}
// Compute left-over elements
for (; x < window_end_x; ++x)
{
uint16_t tmp = static_cast<uint16_t>(*(input1_ptr + x)) * static_cast<uint16_t>(*(input2_ptr + x));
if (is_scale255)
{
float tmp_f = static_cast<float>(tmp) * scale255_constant;
tmp = static_cast<uint16_t>(tmp_f + 0.5f);
}
else
{
tmp >>= n;
}
if (is_sat && tmp > 255)
{
tmp = 255;
}
*(output_ptr + x) = static_cast<uint8_t>(tmp);
}
},
input1, input2, dst);
}
template <bool is_scale255, bool is_sat>
inline int16x8_t mul_S16_S16_S16_n_loop(const int16x8_t &src1, const int16x8_t &src2, int n)
{
int32x4_t tmp1_high = vmovl_s16(vget_high_s16(src1));
const int32x4_t tmp2_high = vmovl_s16(vget_high_s16(src2));
int32x4_t tmp1_low = vmovl_s16(vget_low_s16(src1));
const int32x4_t tmp2_low = vmovl_s16(vget_low_s16(src2));
tmp1_high = vmulq_s32(tmp1_high, tmp2_high);
tmp1_low = vmulq_s32(tmp1_low, tmp2_low);
if (is_scale255)
{
tmp1_high = scale255_S32_S32(tmp1_high);
tmp1_low = scale255_S32_S32(tmp1_low);
}
else
{
// Right shift amount
const int32x4_t vn = vdupq_n_s32(-n);
// Left shift amount
const int32x4_t vnl = vdupq_n_s32(n);
// Calculate conversion bit
const uint32x4_t tmp1_high_u = vreinterpretq_u32_s32(tmp1_high);
const uint32x4_t tmp1_low_u = vreinterpretq_u32_s32(tmp1_low);
const uint32x4_t sign_high = vshrq_n_u32(tmp1_high_u, 31);
const uint32x4_t sign_low = vshrq_n_u32(tmp1_low_u, 31);
const int32x4_t sign_high_s = vreinterpretq_s32_u32(sign_high);
const int32x4_t sign_low_s = vreinterpretq_s32_u32(sign_low);
const int32x4_t convert_high = vsubq_s32(vshlq_s32(sign_high_s, vnl), sign_high_s);
const int32x4_t convert_low = vsubq_s32(vshlq_s32(sign_low_s, vnl), sign_low_s);
if (is_sat)
{
tmp1_high = vqshlq_s32(vaddq_s32(tmp1_high, convert_high), vn);
tmp1_low = vqshlq_s32(vaddq_s32(tmp1_low, convert_low), vn);
}
else
{
tmp1_high = vshlq_s32(vaddq_s32(tmp1_high, convert_high), vn);
tmp1_low = vshlq_s32(vaddq_s32(tmp1_low, convert_low), vn);
}
}
if (is_sat)
{
return vcombine_s16(vqmovn_s32(tmp1_low), vqmovn_s32(tmp1_high));
}
else
{
return vcombine_s16(vmovn_s32(tmp1_low), vmovn_s32(tmp1_high));
}
}
template <bool is_scale255, bool is_sat>
inline int16x8x2_t mul_S16_S16_S16_n_k(const int16x8x2_t &src1, const int16x8x2_t &src2, int n)
{
const int16x8x2_t result = {{// First 8 elements
mul_S16_S16_S16_n_loop<is_scale255, is_sat>(src1.val[0], src2.val[0], n),
// Second 8 elements
mul_S16_S16_S16_n_loop<is_scale255, is_sat>(src1.val[1], src2.val[1], n)}};
return result;
}
template <bool is_scale255, bool is_sat>
void mul_S16_S16_S16(const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window, int n)
{
// Create input windows
Window win = window;
Window input1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(src2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
win.set(Window::DimX, Window::Dimension(0, 1, 1));
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(src1, input1_win);
Iterator input2(src2, input2_win);
Iterator dst(out, win);
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
execute_window_loop(
win,
[&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const int16_t *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const int16_t *>(input2.ptr());
const auto output_ptr = reinterpret_cast<int16_t *>(dst.ptr());
// Compute window_step_x elements per iteration
int x = window_start_x;
for (; x <= (window_end_x - window_step_x); x += window_step_x)
{
const int16x8x2_t ta1 = {{
vld1q_s16(input1_ptr + x),
vld1q_s16(input1_ptr + x + 8),
}};
const int16x8x2_t ta2 = {{
vld1q_s16(input2_ptr + x),
vld1q_s16(input2_ptr + x + 8),
}};
const int16x8x2_t result = mul_S16_S16_S16_n_k<is_scale255, is_sat>(ta1, ta2, n);
vst1q_s16(output_ptr + x, result.val[0]);
vst1q_s16(output_ptr + x + 8, result.val[1]);
}
// Compute left-over elements
for (; x < window_end_x; ++x)
{
int32_t tmp = static_cast<int32_t>(*(input1_ptr + x)) * static_cast<int32_t>(*(input2_ptr + x));
if (is_scale255)
{
float tmp_f = static_cast<float>(tmp) * scale255_constant;
tmp = static_cast<int32_t>(tmp_f + 0.5f);
}
else
{
if (tmp >= 0)
{
tmp >>= n;
}
else
{
uint32_t mask = (1u << n) - 1;
tmp = (tmp + static_cast<int32_t>(mask)) >> n;
}
}
if (is_sat)
{
tmp = (tmp > SHRT_MAX) ? SHRT_MAX : ((tmp < SHRT_MIN) ? SHRT_MIN : tmp);
}
*(output_ptr + x) = static_cast<int16_t>(tmp);
}
},
input1, input2, dst);
}
template <bool is_sat>
inline int32x4_t mul_S32_S32_S32_n_loop(const int32x4_t &src1, const int32x4_t &src2, int n)
{
const int32x2_t input1_1 = vget_low_s32(src1);
const int32x2_t input2_1 = vget_low_s32(src2);
const int32x2_t input1_2 = vget_high_s32(src1);
const int32x2_t input2_2 = vget_high_s32(src2);
int64x2_t tmp_1 = vmull_s32(input1_1, input2_1);
int64x2_t tmp_2 = vmull_s32(input1_2, input2_2);
// Apply scaling, conversion and rounding (round to zero)
// Right shift amount
const int64x2_t vn = vdupq_n_s64(-n);
// Left shift amount
const int64x2_t vnl = vdupq_n_s64(n);
// Calculate conversion bit
const uint64x2_t tmp_1_u = vreinterpretq_u64_s64(tmp_1);
const uint64x2_t sign_1 = vshrq_n_u64(tmp_1_u, 63);
const int64x2_t sign_1_s = vreinterpretq_s64_u64(sign_1);
const int64x2_t convert_1 = vsubq_s64(vshlq_s64(sign_1_s, vnl), sign_1_s);
const uint64x2_t tmp_2_u = vreinterpretq_u64_s64(tmp_2);
const uint64x2_t sign_2 = vshrq_n_u64(tmp_2_u, 63);
const int64x2_t sign_2_s = vreinterpretq_s64_u64(sign_2);
const int64x2_t convert_2 = vsubq_s64(vshlq_s64(sign_2_s, vnl), sign_2_s);
if (is_sat)
{
tmp_1 = vqshlq_s64(vaddq_s64(tmp_1, convert_1), vn);
tmp_2 = vqshlq_s64(vaddq_s64(tmp_2, convert_2), vn);
return vcombine_s32(vqmovn_s64(tmp_1), vqmovn_s64(tmp_2));
}
else
{
tmp_1 = vshlq_s64(vaddq_s64(tmp_1, convert_1), vn);
tmp_2 = vshlq_s64(vaddq_s64(tmp_2, convert_2), vn);
return vcombine_s32(vmovn_s64(tmp_1), vmovn_s64(tmp_2));
}
}
template <bool is_sat>
inline int32x4x2_t mul_S32_S32_S32_n_k(const int32x4x2_t &src1, const int32x4x2_t &src2, int n)
{
const int32x4x2_t result = {{// First 4 elements
mul_S32_S32_S32_n_loop<is_sat>(src1.val[0], src2.val[0], n),
// Second 4 elements
mul_S32_S32_S32_n_loop<is_sat>(src1.val[1], src2.val[1], n)}};
return result;
}
template <bool is_sat>
void mul_S32_S32_S32(const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window, int n)
{
// Create input windows
Window input1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(src2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const int window_step_x = 8;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const bool is_broadcast_across_x = src1->info()->tensor_shape().x() != src2->info()->tensor_shape().x();
if (is_broadcast_across_x)
{
const bool is_broadcast_input_2 = input2_win.x().step() == 0;
Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
const ITensor *broadcast_tensor = is_broadcast_input_2 ? src2 : src1;
const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? src2 : src1;
// Clear X Dimension on execution window as we handle manually
non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator broadcast_input(broadcast_tensor, broadcast_win);
Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
Iterator dst(out, win);
execute_window_loop(
win,
[&](const Coordinates &)
{
const auto non_broadcast_input_ptr = reinterpret_cast<const int32_t *>(non_broadcast_input.ptr());
const auto output_ptr = reinterpret_cast<int32_t *>(dst.ptr());
const int32_t broadcast_value = *reinterpret_cast<const int32_t *>(broadcast_input.ptr());
const auto broadcast_value_vec = vdupq_n_s32(broadcast_value);
// Compute window_step_x elements per iteration
int x = window_start_x;
for (; x <= (window_end_x - window_step_x); x += window_step_x)
{
const int32x4x2_t broadcast_v = {{
broadcast_value_vec,
broadcast_value_vec,
}};
const int32x4x2_t non_broadcast_v = {{
vld1q_s32(non_broadcast_input_ptr + x),
vld1q_s32(non_broadcast_input_ptr + x + 4),
}};
const int32x4x2_t result = mul_S32_S32_S32_n_k<is_sat>(broadcast_v, non_broadcast_v, n);
vst1q_s32(output_ptr + x, result.val[0]);
vst1q_s32(output_ptr + x + 4, result.val[1]);
}
// Compute left-over elements
for (; x < window_end_x; ++x)
{
int64_t tmp =
static_cast<int64_t>(broadcast_value) * static_cast<int64_t>(*(non_broadcast_input_ptr + x));
if (tmp >= 0)
{
tmp >>= n;
}
else
{
uint64_t mask = ((uint64_t)1u << n) - 1;
tmp = (tmp + static_cast<int64_t>(mask)) >> n;
}
if (is_sat)
{
tmp = utility::clamp<int64_t, int32_t>(tmp);
}
*(output_ptr + x) = static_cast<int32_t>(tmp);
}
},
broadcast_input, non_broadcast_input, dst);
}
else
{
// Clear X Dimension on execution window as we handle manually
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(src1, input1_win);
Iterator input2(src2, input2_win);
Iterator dst(out, win);
execute_window_loop(
win,
[&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const int32_t *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const int32_t *>(input2.ptr());
const auto output_ptr = reinterpret_cast<int32_t *>(dst.ptr());
// Compute window_step_x elements per iteration
int x = window_start_x;
for (; x <= (window_end_x - window_step_x); x += window_step_x)
{
const int32x4x2_t ta1 = {{
vld1q_s32(input1_ptr + x),
vld1q_s32(input1_ptr + x + 4),
}};
const int32x4x2_t ta2 = {{
vld1q_s32(input2_ptr + x),
vld1q_s32(input2_ptr + x + 4),
}};
const int32x4x2_t result = mul_S32_S32_S32_n_k<is_sat>(ta1, ta2, n);
vst1q_s32(output_ptr + x, result.val[0]);
vst1q_s32(output_ptr + x + 4, result.val[1]);
}
// Compute left-over elements
for (; x < window_end_x; ++x)
{
int64_t tmp = static_cast<int64_t>(*(input1_ptr + x)) * static_cast<int64_t>(*(input2_ptr + x));
if (tmp >= 0)
{
tmp >>= n;
}
else
{
uint64_t mask = ((uint64_t)1u << n) - 1;
tmp = (tmp + static_cast<int64_t>(mask)) >> n;
}
if (is_sat)
{
tmp = utility::clamp<int64_t, int32_t>(tmp);
}
*(output_ptr + x) = static_cast<int32_t>(tmp);
}
},
input1, input2, dst);
}
}
void c_mul_F32_F32_F32_n(const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window)
{
// Create input windows
Window input1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(src2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
constexpr int window_step_x = 8 / sizeof(float);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const bool is_broadcast_across_x = src1->info()->tensor_shape().x() != src2->info()->tensor_shape().x();
using ExactTagType = typename wrapper::traits::neon_vector<float, 2>::tag_type;
if (is_broadcast_across_x)
{
const bool is_broadcast_input_2 = input2_win.x().step() == 0;
Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
const ITensor *broadcast_tensor = is_broadcast_input_2 ? src2 : src1;
const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? src2 : src1;
// Clear X Dimension on execution window as we handle manually
non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator broadcast_input(broadcast_tensor, broadcast_win);
Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
Iterator dst(out, win);
execute_window_loop(
win,
[&](const Coordinates &)
{
const auto non_broadcast_input_ptr = reinterpret_cast<const float *>(non_broadcast_input.ptr());
const auto output_ptr = reinterpret_cast<float *>(dst.ptr());
const float broadcast_value = *reinterpret_cast<const float *>(broadcast_input.ptr());
// Compute window_step_x elements per iteration
int x = window_start_x;
for (; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto a = wrapper::vloadq(non_broadcast_input_ptr + 2 * x);
float32x4_t b = vdupq_n_f32(broadcast_value);
const float32x4_t mask = {-1.0f, 1.0f, -1.0f, 1.0f};
const float32x2_t tmp00 = wrapper::vdup_n(wrapper::vgetlane(a, 0), ExactTagType{});
const float32x2_t tmp01 = wrapper::vdup_n(wrapper::vgetlane(a, 1), ExactTagType{});
const float32x2_t tmp10 = wrapper::vdup_n(wrapper::vgetlane(a, 2), ExactTagType{});
const float32x2_t tmp11 = wrapper::vdup_n(wrapper::vgetlane(a, 3), ExactTagType{});
const float32x4_t tmp0 = wrapper::vcombine(tmp00, tmp10);
const float32x4_t tmp1 = wrapper::vcombine(tmp01, tmp11);
float32x4_t res = wrapper::vmul(tmp0, b);
b = wrapper::vmul(b, mask);
res = wrapper::vmla(res, tmp1, b);
wrapper::vstore(output_ptr + 2 * x, res);
}
// Compute left-over elements
for (; x < window_end_x; ++x)
{
const auto non_broadcast_value0 = *(non_broadcast_input_ptr + 2 * x);
const auto non_broadcast_value1 = *(non_broadcast_input_ptr + 2 * x + 1);
auto res1 = broadcast_value * (non_broadcast_value0 - non_broadcast_value1);
auto res2 = broadcast_value * (non_broadcast_value1 + non_broadcast_value0);
*(output_ptr + 2 * x) = res1;
*(output_ptr + 2 * x + 1) = res2;
}
},
broadcast_input, non_broadcast_input, dst);
}
else
{
// Clear X Dimension on execution window as we handle manually
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(src1, input1_win);
Iterator input2(src2, input2_win);
Iterator dst(out, win);
execute_window_loop(
win,
[&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const float *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const float *>(input2.ptr());
const auto output_ptr = reinterpret_cast<float *>(dst.ptr());
// Compute window_step_x elements per iteration
int x = window_start_x;
for (; x <= (window_end_x - window_step_x); x += window_step_x)
{
const float32x4_t a = wrapper::vloadq(input1_ptr + 2 * x);
float32x4_t b = wrapper::vloadq(input2_ptr + 2 * x);
const float32x4_t mask = {-1.0f, 1.0f, -1.0f, 1.0f};
const float32x2_t tmp00 = wrapper::vdup_n(wrapper::vgetlane(a, 0), ExactTagType{});
const float32x2_t tmp01 = wrapper::vdup_n(wrapper::vgetlane(a, 1), ExactTagType{});
const float32x2_t tmp10 = wrapper::vdup_n(wrapper::vgetlane(a, 2), ExactTagType{});
const float32x2_t tmp11 = wrapper::vdup_n(wrapper::vgetlane(a, 3), ExactTagType{});
const float32x4_t tmp0 = wrapper::vcombine(tmp00, tmp10);
const float32x4_t tmp1 = wrapper::vcombine(tmp01, tmp11);
float32x4_t res = wrapper::vmul(tmp0, b);
b = wrapper::vrev64(b);
b = wrapper::vmul(b, mask);
res = wrapper::vmla(res, tmp1, b);
wrapper::vstore(output_ptr + 2 * x, res);
}
// Compute left-over elements
for (; x < window_end_x; ++x)
{
const auto a0 = *(input1_ptr + 2 * x);
const auto a1 = *(input1_ptr + 2 * x + 1);
const auto b0 = *(input2_ptr + 2 * x);
const auto b1 = *(input2_ptr + 2 * x + 1);
auto res1 = a0 * b0 - a1 * b1;
auto res2 = a0 * b1 + a1 * b0;
*(output_ptr + 2 * x) = res1;
*(output_ptr + 2 * x + 1) = res2;
}
},
input1, input2, dst);
}
}
template <bool is_scale255, bool is_sat>
void mul_U8_U8_S16(const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window, int n)
{
// Create input windows
Window win = window;
Window input1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(src2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
win.set(Window::DimX, Window::Dimension(0, 1, 1));
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(src1, input1_win);
Iterator input2(src2, input2_win);
Iterator dst(out, win);
const int window_step_x = 16 / sizeof(uint8_t);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
execute_window_loop(
win,
[&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const uint8_t *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
const auto output_ptr = reinterpret_cast<int16_t *>(dst.ptr());
// Compute window_step_x elements per iteration
int x = window_start_x;
for (; x <= (window_end_x - window_step_x); x += window_step_x)
{
const uint8x16_t bv = wrapper::vloadq(input2_ptr + x);
const uint8x16_t av = wrapper::vloadq(input1_ptr + x);
uint16x8_t tmp_low = vmovl_u8(vget_low_u8(av));
uint16x8_t tmp_high = vmovl_u8(vget_high_u8(av));
tmp_low = vmulq_u16(tmp_low, vmovl_u8(vget_low_u8(bv)));
tmp_high = vmulq_u16(tmp_high, vmovl_u8(vget_high_u8(bv)));
if (is_scale255)
{
tmp_low = scale255_U16_U16(tmp_low);
tmp_high = scale255_U16_U16(tmp_high);
}
else
{
const int16x8_t vn = vdupq_n_s16(-n);
if (is_sat)
{
tmp_low = vqshlq_u16(tmp_low, vn);
tmp_high = vqshlq_u16(tmp_high, vn);
}
else
{
tmp_low = vshlq_u16(tmp_low, vn);
tmp_high = vshlq_u16(tmp_high, vn);
}
}
if (is_sat)
{
static const uint16x8_t max = vdupq_n_u16(SHRT_MAX);
tmp_low = vminq_u16(tmp_low, max);
tmp_high = vminq_u16(tmp_high, max);
}
vst1q_s16(output_ptr + x, vreinterpretq_s16_u16(tmp_low));
vst1q_s16(output_ptr + x + 8, vreinterpretq_s16_u16(tmp_high));
}
// Compute left-over elements
for (; x < window_end_x; ++x)
{
int32_t tmp = static_cast<int32_t>(*(input1_ptr + x)) * static_cast<int32_t>(*(input2_ptr + x));
if (is_scale255)
{
float tmp_f = static_cast<float>(tmp) * scale255_constant;
tmp = static_cast<int32_t>(tmp_f + 0.5f);
}
else
{
tmp >>= n;
}
if (is_sat)
{
tmp = (tmp > SHRT_MAX) ? SHRT_MAX : tmp;
}
*(output_ptr + x) = static_cast<int16_t>(tmp);
}
},
input1, input2, dst);
}
template <bool is_scale255, bool is_sat>
void mul_S16_U8_S16(const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window, int n)
{
// Create input windows
Window win = window;
Window input1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(src2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
win.set(Window::DimX, Window::Dimension(0, 1, 1));
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(src1, input1_win);
Iterator input2(src2, input2_win);
Iterator dst(out, win);
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
execute_window_loop(
win,
[&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const int16_t *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
const auto output_ptr = reinterpret_cast<int16_t *>(dst.ptr());
// Compute window_step_x elements per iteration
int x = window_start_x;
for (; x <= (window_end_x - window_step_x); x += window_step_x)
{
const int16x8x2_t ta1 = {{
vld1q_s16(input1_ptr + x),
vld1q_s16(input1_ptr + x + 8),
}};
const uint8x8x2_t ta2u = {{
vld1_u8(input2_ptr + x),
vld1_u8(input2_ptr + x + 8),
}};
const int16x8x2_t ta2 = {
{vreinterpretq_s16_u16(vmovl_u8(ta2u.val[0])), vreinterpretq_s16_u16(vmovl_u8(ta2u.val[1]))}};
const int16x8x2_t result = mul_S16_S16_S16_n_k<is_scale255, is_sat>(ta1, ta2, n);
vst1q_s16(output_ptr + x, result.val[0]);
vst1q_s16(output_ptr + x + 8, result.val[1]);
}
// Compute left-over elements
for (; x < window_end_x; ++x)
{
int32_t tmp = static_cast<int32_t>(*(input1_ptr + x)) * static_cast<int32_t>(*(input2_ptr + x));
if (is_scale255)
{
float tmp_f = static_cast<float>(tmp) * scale255_constant;
tmp = static_cast<int32_t>(tmp_f + 0.5f);
}
else
{
if (tmp >= 0)
{
tmp >>= n;
}
else
{
uint32_t mask = (1u << n) - 1;
tmp = (tmp + static_cast<int32_t>(mask)) >> n;
}
}
if (is_sat)
{
tmp = (tmp > SHRT_MAX) ? SHRT_MAX : ((tmp < SHRT_MIN) ? SHRT_MIN : tmp);
}
*(output_ptr + x) = static_cast<int16_t>(tmp);
}
},
input1, input2, dst);
}
template <bool is_scale255, bool is_sat>
void mul_U8_S16_S16(const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window, int n)
{
// Simply swap the two input buffers
mul_S16_U8_S16<is_scale255, is_sat>(src2, src1, out, window, n);
}
} // namespace
void CpuMulKernel::configure(ITensorInfo *src1,
ITensorInfo *src2,
ITensorInfo *dst,
float scale,
ConvertPolicy overflow_policy,
RoundingPolicy rounding_policy)
{
ARM_COMPUTE_UNUSED(rounding_policy);
ARM_COMPUTE_ERROR_ON_NULLPTR(src1, src2, dst);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src1, src2, dst, scale, overflow_policy, rounding_policy));
const TensorShape &out_shape = TensorShape::broadcast_shape(src1->tensor_shape(), src2->tensor_shape());
// Auto initialize dst if not initialized
set_shape_if_empty(*dst, out_shape);
_scale = scale;
_scale_exponent = 0;
_func_quantized = nullptr;
_func_int = nullptr;
_func_float = nullptr;
bool is_scale_255 = false;
// Check and validate scaling factor
if (std::abs(scale - scale255_constant) < 0.00001f)
{
is_scale_255 = true;
}
else
{
int exponent = 0;
std::frexp(scale, &exponent);
// Store the positive exponent. We know that we compute 1/2^n
// Additionally we need to subtract 1 to compensate that frexp used a mantissa of 0.5
_scale_exponent = std::abs(exponent - 1);
}
const DataType dt_input1 = src1->data_type();
const DataType dt_input2 = src2->data_type();
const DataType dt_output = dst->data_type();
const bool is_sat = (overflow_policy == ConvertPolicy::SATURATE);
switch (dt_input1)
{
case DataType::QASYMM8:
if (dt_input2 == DataType::QASYMM8 && dt_output == DataType::QASYMM8)
{
if (mul_q8_neon_fixedpoint_possible(src1, src2, dst, scale))
{
_func_quantized = &mul_q8_neon_fixedpoint<uint8_t>;
}
else
{
_func_quantized = &mul_saturate_quantized_8<uint8_t>;
}
}
break;
case DataType::QASYMM8_SIGNED:
if (dt_input2 == DataType::QASYMM8_SIGNED)
{
if (mul_q8_neon_fixedpoint_possible(src1, src2, dst, scale))
{
_func_quantized = &mul_q8_neon_fixedpoint<int8_t>;
}
else
{
_func_quantized = &mul_saturate_quantized_8<int8_t>;
}
}
break;
case DataType::QSYMM16:
if (dt_input2 == DataType::QSYMM16 && dt_output == DataType::QSYMM16)
{
_func_quantized = &mul_saturate_QSYMM16_QSYMM16_QSYMM16;
}
else if (dt_input2 == DataType::QSYMM16 && dt_output == DataType::S32)
{
_func_int = &mul_QSYMM16_QSYMM16_S32;
}
break;
case DataType::S16:
if (DataType::U8 == dt_input2 && DataType::S16 == dt_output)
{
if (is_scale_255)
{
_func_int = is_sat ? &mul_S16_U8_S16<true, true> : &mul_S16_U8_S16<true, false>;
}
else
{
_func_int = is_sat ? &mul_S16_U8_S16<false, true> : &mul_S16_U8_S16<false, false>;
}
}
if (DataType::S16 == dt_input2 && DataType::S16 == dt_output)
{
if (is_scale_255)
{
_func_int = is_sat ? &mul_S16_S16_S16<true, true> : &mul_S16_S16_S16<true, false>;
}
else
{
_func_int = is_sat ? &mul_S16_S16_S16<false, true> : &mul_S16_S16_S16<false, false>;
}
}
break;
case DataType::S32:
if (DataType::S32 == dt_input2 && DataType::S32 == dt_output)
{
_func_int = is_sat ? &mul_S32_S32_S32<true> : &mul_S32_S32_S32<false>;
}
break;
case DataType::U8:
if (DataType::U8 == dt_input2 && DataType::U8 == dt_output)
{
if (is_scale_255)
{
_func_int = is_sat ? &mul_U8_U8_U8<true, true> : &mul_U8_U8_U8<true, false>;
}
else
{
_func_int = is_sat ? &mul_U8_U8_U8<false, true> : &mul_U8_U8_U8<false, false>;
}
}
else if (DataType::U8 == dt_input2 && DataType::S16 == dt_output)
{
if (is_scale_255)
{
_func_int = is_sat ? &mul_U8_U8_S16<true, true> : &mul_U8_U8_S16<true, false>;
}
else
{
_func_int = is_sat ? &mul_U8_U8_S16<false, true> : &mul_U8_U8_S16<false, false>;
}
}
else if (DataType::S16 == dt_input2 && DataType::S16 == dt_output)
{
if (is_scale_255)
{
_func_int = is_sat ? &mul_U8_S16_S16<true, true> : &mul_U8_S16_S16<true, false>;
}
else
{
_func_int = is_sat ? &mul_U8_S16_S16<false, true> : &mul_U8_S16_S16<false, false>;
}
}
break;
case DataType::F16:
_func_float = REGISTER_FP16_NEON(cpu::mul_F16_F16_F16);
break;
case DataType::F32:
_func_float = REGISTER_FP32_NEON(cpu::mul_F32_F32_F32);
break;
default:
ARM_COMPUTE_ERROR("You called with the wrong img formats");
}
// Configure kernel window
Window win;
std::tie(win, _split_dimension) = calculate_squashed_or_max_window(*src1, *src2);
ICpuKernel::configure(win);
}
size_t CpuMulKernel::get_mws(const CPUInfo &platform, size_t thread_count) const
{
ARM_COMPUTE_UNUSED(thread_count);
#if defined(ENABLE_FP32_KERNELS)
if (this->_func_float == &mul_F32_F32_F32)
{
size_t mws = ICPPKernel::default_mws;
if (platform.get_cpu_model() == CPUModel::N1)
{
mws = default_mws_N1_fp32_neon;
}
else if (platform.get_cpu_model() == CPUModel::V1)
{
mws = default_mws_V1_fp32_neon;
}
else
{
if (_split_dimension == Window::DimX)
{
// Don't split the work load too small if the tensor has been reinterpreted as 1D.
// This number is loosely chosen as threading overhead in each platform varies wildly.
return default_mws_other_platforms_1d_tensor;
}
return default_mws;
}
// tensor is 1D or was re-interpreted as 1D
if (this->window().shape().num_dimensions() == 1)
{
return mws;
}
else
{
// scale mws down by the number of elements along all the dimensions (x, z, w, etc) except the one
// that we parallelize along (the y dimension). This allows for parallelization when the Y_SIZE is small
// but the other sizes are large, which boosts performance.
mws = static_cast<size_t>(mws / (this->window().num_iterations_total() / this->window().num_iterations(1)));
return std::max(static_cast<size_t>(1), mws);
}
}
#else /* ENABLE_FP32_KERNELS */
ARM_COMPUTE_UNUSED(platform);
#endif /* ENABLE_FP32_KERNELS */
if (_split_dimension == Window::DimX)
{
// Don't split the work load too small if the tensor has been reinterpreted as 1D.
// This number is loosely chosen as threading overhead in each platform varies wildly.
return default_mws_other_platforms_1d_tensor;
}
return default_mws;
}
Status CpuMulKernel::validate(const ITensorInfo *src1,
const ITensorInfo *src2,
const ITensorInfo *dst,
float scale,
ConvertPolicy overflow_policy,
RoundingPolicy rounding_policy)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src1, src2, dst);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src1, src2, dst, scale, overflow_policy, rounding_policy));
return Status{};
}
void CpuMulKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
auto src1 = tensors.get_const_tensor(TensorType::ACL_SRC_0);
auto src2 = tensors.get_const_tensor(TensorType::ACL_SRC_1);
auto dst = tensors.get_tensor(TensorType::ACL_DST);
if (_func_quantized != nullptr)
{
(*_func_quantized)(src1, src2, dst, window, _scale);
}
else if (_func_int != nullptr)
{
(*_func_int)(src1, src2, dst, window, _scale_exponent);
}
else
{
ARM_COMPUTE_ERROR_ON(_func_float == nullptr);
(*_func_float)(src1, src2, dst, window, _scale);
}
}
const char *CpuMulKernel::name() const
{
return "CpuMulKernel";
}
namespace
{
Status validate_arguments_complex(const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src1, 2, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src2, 2, DataType::F32);
const TensorShape &out_shape = TensorShape::broadcast_shape(src1->tensor_shape(), src2->tensor_shape());
ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
// Validate in case of configured dst
if (dst->total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 2, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, dst->tensor_shape(), 0),
"Wrong shape for dst");
}
return Status{};
}
} // namespace
void CpuComplexMulKernel::configure(ITensorInfo *src1, ITensorInfo *src2, ITensorInfo *dst)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src1, src2, dst);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_complex(src1, src2, dst));
const TensorShape &out_shape = TensorShape::broadcast_shape(src1->tensor_shape(), src2->tensor_shape());
// Auto initialize dst if not initialized
const TensorInfo out_info(out_shape, src1->num_channels(), src1->data_type());
auto_init_if_empty(*dst, out_info);
// Configure kernel window
Window win = calculate_max_window(out_shape);
ICpuKernel::configure(win);
}
Status CpuComplexMulKernel::validate(const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src1, src2, dst);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_complex(src1, src2, dst));
return Status{};
}
void CpuComplexMulKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
auto src1 = tensors.get_const_tensor(TensorType::ACL_SRC_0);
auto src2 = tensors.get_const_tensor(TensorType::ACL_SRC_1);
auto dst = tensors.get_tensor(TensorType::ACL_DST);
c_mul_F32_F32_F32_n(src1, src2, dst, window);
}
const char *CpuComplexMulKernel::name() const
{
return "CpuComplexMulKernel";
}
} // namespace kernels
} // namespace cpu
} // namespace arm_compute