blob: df0578bc6e2b0da46f7f8b9bfbf0b90e2397ec1e [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/CL/kernels/CLDirectConvolutionLayerKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "support/ToolchainSupport.h"
using namespace arm_compute;
namespace
{
/** Calculates expected output shape dimension
*
* @param[in] Input shape
*
* @return Expected output shape
*/
TensorShape get_output_shape(TensorShape input_shape, TensorShape weights_shape, PadStrideInfo conv_info)
{
unsigned int output_width = 0;
unsigned int output_height = 0;
std::tie(output_width, output_height) = scaled_dimensions(input_shape.x(), input_shape.y(), weights_shape.x(), weights_shape.y(), conv_info);
TensorShape output_shape = input_shape;
output_shape.set(0, output_width);
output_shape.set(1, output_height);
output_shape.set(2, weights_shape[3]);
return output_shape;
}
Error validate_arguments(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QASYMM8, DataType::QS16, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights->dimension(0) != weights->dimension(1),
"Weights should have same width as length");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights->dimension(0) != 1 && weights->dimension(0) != 3 && weights->dimension(0) != 5,
"Kernel sizes other than 1x1, 3x3 or 5x5 are not supported");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights->dimension(2) != input->dimension(2),
"Weights feature map dimension should match the respective input's one");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights->dimension(0) != weights->dimension(1),
"Only rectangular weights are supported!");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights->num_dimensions() > 4,
"Weights can be at most 4 dimensional");
ARM_COMPUTE_RETURN_ERROR_ON_MSG((weights->dimension(0) == 1) && std::get<0>(conv_info.stride()) > 3,
"Strides larger than 3 not supported for 1x1 convolution.");
ARM_COMPUTE_RETURN_ERROR_ON_MSG((weights->dimension(0) == 3 || weights->dimension(0) == 5) && std::get<0>(conv_info.stride()) > 2,
"Strides larger than 2 not supported for 3x3 convolution.");
if(biases != nullptr)
{
if(is_data_type_quantized_asymmetric(input->data_type()))
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
}
ARM_COMPUTE_RETURN_ERROR_ON_MSG(biases->dimension(0) != weights->dimension(3),
"Biases size and number of input feature maps should match");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(biases->num_dimensions() > 1,
"Biases should be one dimensional");
}
// Checks performed when output is configured
if(output->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(),
get_output_shape(input->tensor_shape(), weights->tensor_shape(), conv_info));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(input, output);
}
return Error{};
}
std::pair<Error, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *weights, ITensorInfo *output, const PadStrideInfo &conv_info, const GPUTarget target)
{
const unsigned int kernel_size = weights->dimension(0);
const DataType data_type = input->data_type();
// Get convolved dimensions
TensorShape output_shape = get_output_shape(input->tensor_shape(), weights->tensor_shape(), conv_info);
// Output auto inizialitation if not yet initialized
// FIXME: input->clone()->set_tensor_shape(output_shape) doesn't work with subtensors for grouped direct convolutions (AlexNet).
auto_init_if_empty(*output, output_shape,
1,
input->data_type(),
input->fixed_point_position(),
input->quantization_info());
unsigned int conv_stride_x = std::get<0>(conv_info.stride());
unsigned int conv_stride_y = std::get<1>(conv_info.stride());
unsigned int conv_pad_left = std::min(conv_info.pad_left(), kernel_size / 2);
unsigned int conv_pad_top = std::min(conv_info.pad_top(), kernel_size / 2);
unsigned int conv_pad_right = std::min(conv_info.pad_right(), kernel_size / 2);
unsigned int conv_pad_bottom = std::min(conv_info.pad_bottom(), kernel_size / 2);
unsigned int num_elems_read_per_iteration_x = 0;
unsigned int num_elems_read_per_iteration_y = 0;
unsigned int num_elems_written_per_iteration_x = 0;
unsigned int num_elems_written_per_iteration_y = 0;
Window win = Window();
bool window_changed = false;
if((target == GPUTarget::BIFROST) && (kernel_size <= 5) && (conv_stride_x == 1) && (conv_stride_y == 1) && (data_type == DataType::F32))
{
// Configure kernel window
win = calculate_max_window(*output);
switch(kernel_size)
{
case 1:
{
num_elems_read_per_iteration_x = 4;
num_elems_read_per_iteration_y = 4;
num_elems_written_per_iteration_x = 4;
num_elems_written_per_iteration_y = 4;
break;
}
case 3:
{
num_elems_read_per_iteration_x = 6;
num_elems_read_per_iteration_y = 5;
num_elems_written_per_iteration_x = 4;
num_elems_written_per_iteration_y = 3;
break;
}
case 5:
{
num_elems_read_per_iteration_x = 8;
num_elems_read_per_iteration_y = 6;
num_elems_written_per_iteration_x = 4;
num_elems_written_per_iteration_y = 2;
break;
}
default:
{
ARM_COMPUTE_ERROR("Kernel size not optimized for Bifrost");
}
}
}
else
{
bool is_stride2 = ((kernel_size != 1) && (conv_stride_x == 2));
num_elems_read_per_iteration_x = 8 + 2 * (kernel_size / 2) + (is_stride2 ? 6 + kernel_size / 2 : 0);
num_elems_read_per_iteration_y = kernel_size;
num_elems_written_per_iteration_x = 8;
num_elems_written_per_iteration_y = 1;
}
// Calculate right and bottom border
int input_width = input->dimension(0) - kernel_size / 2 + conv_pad_right;
int input_height = input->dimension(1) - kernel_size / 2 + conv_pad_bottom;
// Add padding only if necessary or it would always result in a window_changed
if(input_width % num_elems_read_per_iteration_x > 0)
{
input_width += num_elems_read_per_iteration_x;
}
if(input_height % num_elems_read_per_iteration_y > 0)
{
input_height += num_elems_read_per_iteration_y;
}
// Create window and update padding
win = calculate_max_window(*output, Steps(num_elems_written_per_iteration_x, num_elems_written_per_iteration_y));
AccessWindowStatic input_access(input, -conv_pad_left, -conv_pad_top, input_width, input_height);
AccessWindowStatic weights_access(weights, 0, 0, kernel_size, kernel_size);
AccessWindowRectangle output_access(output, 0, 0, num_elems_written_per_iteration_x, num_elems_written_per_iteration_y);
window_changed = update_window_and_padding(win, input_access, weights_access, output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
Error err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Error{};
return std::make_pair(err, win);
}
} // namespace
CLDirectConvolutionLayerKernel::CLDirectConvolutionLayerKernel()
: _input(nullptr), _biases(nullptr), _weights(nullptr), _output(nullptr), _border_size(0), _conv_stride_x(0), _conv_stride_y(0)
{
}
BorderSize CLDirectConvolutionLayerKernel::border_size() const
{
return _border_size;
}
void CLDirectConvolutionLayerKernel::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
const unsigned int kernel_size = weights->info()->dimension(0);
const DataType data_type = input->info()->data_type();
// Get convolved dimensions
TensorShape output_shape = get_output_shape(input->info()->tensor_shape(), weights->info()->tensor_shape(), conv_info);
// Output auto inizialitation if not yet initialized
// FIXME: input->clone()->set_tensor_shape(output_shape) doesn't work with subtensors for grouped direct convolutions (AlexNet).
auto_init_if_empty(*output->info(),
output_shape,
1,
input->info()->data_type(),
input->info()->fixed_point_position(),
input->info()->quantization_info());
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(),
weights->info(),
(biases != nullptr) ? biases->info() : nullptr,
output->info(),
conv_info));
_conv_stride_x = std::get<0>(conv_info.stride());
_conv_stride_y = std::get<1>(conv_info.stride());
_input = input;
_weights = weights;
_output = output;
_biases = biases;
int conv_pad_left = std::min(conv_info.pad_left(), kernel_size / 2);
int conv_pad_top = std::min(conv_info.pad_top(), kernel_size / 2);
int conv_pad_right = std::min(conv_info.pad_right(), kernel_size / 2);
int conv_pad_bottom = std::min(conv_info.pad_bottom(), kernel_size / 2);
_border_size = BorderSize(conv_pad_top, conv_pad_right, conv_pad_bottom, conv_pad_left);
const GPUTarget gpu_target = get_arch_from_target(get_target());
std::stringstream kernel_name;
kernel_name << "direct_convolution" << kernel_size << "x" << kernel_size;
CLBuildOptions build_options;
build_options.add_option_if(_biases != nullptr, std::string("-DHAS_BIAS"));
if((gpu_target == GPUTarget::BIFROST) && (kernel_size <= 5) && (_conv_stride_x == 1) && (_conv_stride_y == 1) && (data_type == DataType::F32))
{
build_options.add_option(std::string("-DWEIGHTS_DEPTH=" + support::cpp11::to_string(_weights->info()->dimension(2))));
kernel_name << "_f32_bifrost";
_kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name.str(), build_options.options()));
// Through extensive experimentation with over 30 representative tensor
// shapes, we found a small number of local work size configurations
// that result in nearly optimal execution times. Selecting the right
// lws for a given shape, however, required a complex decision tree,
// until we constructed a simple feature as described below.
//
// We started from the number of multiply-accumulate operations for a
// convolution layer, which is equal to the product of the input
// dimensions 0..2 and the weights dimensions 0..2. Unfortunately,
// this resulted in ties between distinct shapes that required distinct
// lws configurations. Replacing the width of the input with the kernel
// size, however, resulted in nearly optimal predictions. We use underscores
// in variable names to indicate when they are intentionally misleading.
const size_t product_of_weights_dimensions = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2);
const size_t product_of_input_dimensions_ = input->info()->dimension(0) * weights->info()->dimension(1) * input->info()->dimension(2);
const float mega_ops_ = 1e-6 * product_of_weights_dimensions * product_of_input_dimensions_;
switch(kernel_size)
{
case 1:
{
if(mega_ops_ < 1.f)
{
_lws_hint = cl::NDRange(1, 1, 8);
}
else if(mega_ops_ < 7.f)
{
_lws_hint = cl::NDRange(1, 1, 4);
}
else
{
_lws_hint = cl::NDRange(1, 1, 2);
}
break;
}
case 3:
{
if(mega_ops_ < 1.f)
{
_lws_hint = cl::NDRange(1, 1, 8);
}
else if(mega_ops_ < 13.f)
{
_lws_hint = cl::NDRange(2, 1, 4);
}
else if(mega_ops_ < 50.f)
{
_lws_hint = cl::NDRange(3, 1, 4);
}
else
{
_lws_hint = cl::NDRange(2, 1, 6);
}
break;
}
case 5:
{
if(mega_ops_ < 2.f || mega_ops_ > 80.f)
{
_lws_hint = cl::NDRange(2, 1, 4);
}
else
{
_lws_hint = cl::NDRange(2, 1, 8);
}
break;
}
default:
{
ARM_COMPUTE_ERROR("Kernel size not optimized for Bifrost");
}
}
}
else
{
bool is_quantized_fixed_point = is_data_type_fixed_point(data_type);
bool is_quantized_asymm = is_data_type_quantized_asymmetric(data_type);
DataType promoted_type = (is_quantized_fixed_point) ? get_promoted_data_type(data_type) : data_type;
build_options.add_option_if(is_quantized_asymm, std::string("-DKERNEL_SIZE=" + support::cpp11::to_string(kernel_size)));
build_options.add_option(std::string("-DDATA_TYPE=" + get_cl_type_from_data_type(data_type)));
build_options.add_option(std::string("-DDATA_SIZE=" + get_data_size_from_data_type(data_type)));
build_options.add_option(std::string("-DWEIGHTS_DEPTH=" + support::cpp11::to_string(_weights->info()->dimension(2))));
build_options.add_option(std::string("-DSTRIDE_X=" + support::cpp11::to_string(_conv_stride_x)));
build_options.add_option_if(is_quantized_fixed_point,
std::string("-DFIXED_POINT_POSITION=" + support::cpp11::to_string(input->info()->fixed_point_position())));
build_options.add_option(std::string("-DDATA_TYPE_PROMOTED=" + get_cl_type_from_data_type(promoted_type)));
// Create kernel
_kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(is_quantized_asymm ? "direct_convolution_1x1_3x3_5x5_quantized" : kernel_name.str(),
build_options.options()));
}
// Configure kernel window
auto win_config = validate_and_configure_window(input->info(), weights->info(), output->info(), conv_info, gpu_target);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICLKernel::configure(win_config.second);
// Set static kernel arguments
if(is_data_type_quantized_asymmetric(data_type))
{
int output_multiplier = 0;
int output_shift = 0;
float multiplier = _input->info()->quantization_info().scale * _weights->info()->quantization_info().scale / _output->info()->quantization_info().scale;
ARM_COMPUTE_THROW_ON_ERROR(quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift));
unsigned int idx = 3 * num_arguments_per_3D_tensor() + ((_biases != nullptr) ? num_arguments_per_1D_tensor() : 0) + 1;
_kernel.setArg(idx++, -_input->info()->quantization_info().offset);
_kernel.setArg(idx++, -_weights->info()->quantization_info().offset);
_kernel.setArg(idx++, _output->info()->quantization_info().offset);
_kernel.setArg(idx++, output_multiplier);
_kernel.setArg(idx++, output_shift);
}
// Set config_id for enabling LWS tuning
_config_id = "direct_convolution_";
_config_id += lower_string(string_from_data_type(data_type));
_config_id += "_";
_config_id += support::cpp11::to_string(kernel_size);
_config_id += "_";
_config_id += support::cpp11::to_string(conv_pad_left);
_config_id += "_";
_config_id += support::cpp11::to_string(conv_pad_top);
_config_id += "_";
_config_id += support::cpp11::to_string(conv_pad_right);
_config_id += "_";
_config_id += support::cpp11::to_string(conv_pad_bottom);
_config_id += "_";
_config_id += support::cpp11::to_string(_conv_stride_x);
_config_id += "_";
_config_id += support::cpp11::to_string(_conv_stride_y);
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(0));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(1));
}
Error CLDirectConvolutionLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
const GPUTarget target)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, weights, biases, output, conv_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), weights->clone().get(), output->clone().get(), conv_info, target).first);
return Error{};
}
void CLDirectConvolutionLayerKernel::run(const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
// Get initial windows
Window slice = window.first_slice_window_3D();
Window win_in = window;
win_in.adjust(Window::DimX, -_border_size.left, true);
win_in.adjust(Window::DimY, -_border_size.top, true);
win_in.set_dimension_step(Window::DimX, window.x().step() * _conv_stride_x);
win_in.set_dimension_step(Window::DimY, window.y().step() * _conv_stride_y);
Window slice_in = win_in.first_slice_window_3D();
unsigned int idx1 = 2 * num_arguments_per_3D_tensor();
add_3D_tensor_argument(idx1, _weights, slice);
if(_biases != nullptr)
{
Window slice_biases;
slice_biases.use_tensor_dimensions(_biases->info()->tensor_shape());
add_1D_tensor_argument(idx1, _biases, slice_biases);
}
_kernel.setArg(idx1++, static_cast<unsigned int>(_weights->info()->strides_in_bytes()[3]));
do
{
unsigned int idx = 0;
add_3D_tensor_argument(idx, _input, slice_in);
add_3D_tensor_argument(idx, _output, slice);
enqueue(queue, *this, slice, _lws_hint);
}
while(window.slide_window_slice_3D(slice) && win_in.slide_window_slice_3D(slice_in));
}