blob: f7273f073f470f0fb13f779159896dc55bd51704 [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "PoolingLayer.h"
#include "arm_compute/core/Types.h"
#include "tests/validation/FixedPoint.h"
namespace arm_compute
{
namespace test
{
namespace validation
{
namespace reference
{
namespace
{
TensorShape calculate_output_shape(TensorShape shape, PoolingLayerInfo info)
{
TensorShape dst_shape = shape;
const std::pair<unsigned int, unsigned int> scaled_dims = arm_compute::scaled_dimensions(shape.x(),
shape.y(),
info.pool_size(),
info.pool_size(),
info.pad_stride_info());
dst_shape.set(0, scaled_dims.first);
dst_shape.set(1, scaled_dims.second);
return dst_shape;
}
} // namespace
template <typename T, typename std::enable_if<is_floating_point<T>::value, int>::type>
SimpleTensor<T> pooling_layer(const SimpleTensor<T> &src, PoolingLayerInfo info)
{
const int pool_size = info.pool_size();
PoolingType type = info.pool_type();
int pool_stride_x = info.pad_stride_info().stride().first;
int pool_stride_y = info.pad_stride_info().stride().second;
int pad_x = info.pad_stride_info().pad().first;
int pad_y = info.pad_stride_info().pad().second;
const auto w_src = static_cast<int>(src.shape()[0]);
const auto h_src = static_cast<int>(src.shape()[1]);
const int upper_dims = src.shape().total_size() / (w_src * h_src);
// Create reference
SimpleTensor<T> dst{ calculate_output_shape(src.shape(), info), src.data_type(), 1, src.fixed_point_position() };
const auto w_dst = static_cast<int>(dst.shape()[0]);
const auto h_dst = static_cast<int>(dst.shape()[1]);
if(type == PoolingType::MAX)
{
for(int r = 0; r < upper_dims; ++r)
{
for(int h = 0; h < h_dst; ++h)
{
for(int w = 0; w < w_dst; ++w)
{
int wstart = w * pool_stride_x - pad_x;
int hstart = h * pool_stride_y - pad_y;
int wend = std::min(wstart + pool_size, w_src);
int hend = std::min(hstart + pool_size, h_src);
wstart = std::max(wstart, 0);
hstart = std::max(hstart, 0);
T max_val = std::numeric_limits<T>::lowest();
for(int y = hstart; y < hend; ++y)
{
for(int x = wstart; x < wend; ++x)
{
const T val = src[r * h_src * w_src + y * w_src + x];
if(val > max_val)
{
max_val = val;
}
}
}
dst[r * h_dst * w_dst + h * w_dst + w] = max_val;
}
}
}
}
else // Average pooling
{
for(int r = 0; r < upper_dims; ++r)
{
for(int h = 0; h < h_dst; ++h)
{
for(int w = 0; w < w_dst; ++w)
{
T avg_val(0);
int wstart = w * pool_stride_x - pad_x;
int hstart = h * pool_stride_y - pad_y;
int wend = std::min(wstart + pool_size, w_src + pad_x);
int hend = std::min(hstart + pool_size, h_src + pad_y);
int pool = (hend - hstart) * (wend - wstart);
wstart = std::max(wstart, 0);
hstart = std::max(hstart, 0);
wend = std::min(wend, w_src);
hend = std::min(hend, h_src);
for(int y = hstart; y < hend; ++y)
{
for(int x = wstart; x < wend; ++x)
{
avg_val += src[r * h_src * w_src + y * w_src + x];
}
}
dst[r * h_dst * w_dst + h * w_dst + w] = avg_val / pool;
}
}
}
}
return dst;
}
template <typename T, typename std::enable_if<std::is_integral<T>::value, int>::type>
SimpleTensor<T> pooling_layer(const SimpleTensor<T> &src, PoolingLayerInfo info)
{
const int pool_size = info.pool_size();
PoolingType type = info.pool_type();
int pool_stride_x = info.pad_stride_info().stride().first;
int pool_stride_y = info.pad_stride_info().stride().second;
int pad_x = info.pad_stride_info().pad().first;
int pad_y = info.pad_stride_info().pad().second;
const auto w_src = static_cast<int>(src.shape()[0]);
const auto h_src = static_cast<int>(src.shape()[1]);
const int upper_dims = src.shape().total_size() / (w_src * h_src);
// Create reference
SimpleTensor<T> dst{ calculate_output_shape(src.shape(), info), src.data_type(), 1, src.fixed_point_position() };
const auto w_dst = static_cast<int>(dst.shape()[0]);
const auto h_dst = static_cast<int>(dst.shape()[1]);
if(type == PoolingType::MAX)
{
for(int r = 0; r < upper_dims; ++r)
{
for(int h = 0; h < h_dst; ++h)
{
for(int w = 0; w < w_dst; ++w)
{
int wstart = w * pool_stride_x - pad_x;
int hstart = h * pool_stride_y - pad_y;
int wend = std::min(wstart + pool_size, w_src);
int hend = std::min(hstart + pool_size, h_src);
wstart = std::max(wstart, 0);
hstart = std::max(hstart, 0);
T max_val = std::numeric_limits<T>::lowest();
for(int y = hstart; y < hend; ++y)
{
for(int x = wstart; x < wend; ++x)
{
const T val = src[r * h_src * w_src + y * w_src + x];
if(val > max_val)
{
max_val = val;
}
}
}
dst[r * h_dst * w_dst + h * w_dst + w] = max_val;
}
}
}
}
else // Average pooling
{
for(int r = 0; r < upper_dims; ++r)
{
for(int h = 0; h < h_dst; ++h)
{
for(int w = 0; w < w_dst; ++w)
{
int wstart = w * pool_stride_x - pad_x;
int hstart = h * pool_stride_y - pad_y;
int wend = std::min(wstart + pool_size, w_src + pad_x);
int hend = std::min(hstart + pool_size, h_src + pad_y);
int pool = (hend - hstart) * (wend - wstart);
wstart = std::max(wstart, 0);
hstart = std::max(hstart, 0);
wend = std::min(wend, w_src);
hend = std::min(hend, h_src);
using namespace fixed_point_arithmetic;
const int fixed_point_position = src.fixed_point_position();
const fixed_point<T> invpool_fp(1.f / static_cast<float>(pool), fixed_point_position);
fixed_point<T> avg_val(0, fixed_point_position, true);
for(int y = hstart; y < hend; ++y)
{
for(int x = wstart; x < wend; ++x)
{
const fixed_point<T> in_fp(src[r * h_src * w_src + y * w_src + x], fixed_point_position, true);
avg_val = add(avg_val, in_fp);
}
}
dst[r * h_dst * w_dst + h * w_dst + w] = mul(avg_val, invpool_fp).raw();
}
}
}
}
return dst;
}
template SimpleTensor<float> pooling_layer(const SimpleTensor<float> &src, PoolingLayerInfo info);
template SimpleTensor<half> pooling_layer(const SimpleTensor<half> &src, PoolingLayerInfo info);
template SimpleTensor<qint8_t> pooling_layer(const SimpleTensor<qint8_t> &src, PoolingLayerInfo info);
template SimpleTensor<qint16_t> pooling_layer(const SimpleTensor<qint16_t> &src, PoolingLayerInfo info);
} // namespace reference
} // namespace validation
} // namespace test
} // namespace arm_compute