blob: 27b4fc2c1b606b87c6f19178613319598c5e17ee [file] [log] [blame]
/*
* Copyright (c) 2016-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
namespace arm_compute
{
/** Exponent polynomial coefficients */
const std::array<float32x4_t, 8> exp_tab =
{
{
vdupq_n_f32(1.f),
vdupq_n_f32(0.0416598916054f),
vdupq_n_f32(0.500000596046f),
vdupq_n_f32(0.0014122662833f),
vdupq_n_f32(1.00000011921f),
vdupq_n_f32(0.00833693705499f),
vdupq_n_f32(0.166665703058f),
vdupq_n_f32(0.000195780929062f),
}
};
/** Logarithm polynomial coefficients */
const std::array<float32x4_t, 8> log_tab =
{
{
vdupq_n_f32(-2.29561495781f),
vdupq_n_f32(-2.47071170807f),
vdupq_n_f32(-5.68692588806f),
vdupq_n_f32(-0.165253549814f),
vdupq_n_f32(5.17591238022f),
vdupq_n_f32(0.844007015228f),
vdupq_n_f32(4.58445882797f),
vdupq_n_f32(0.0141278216615f),
}
};
#ifndef DOXYGEN_SKIP_THIS
inline float32x4_t vfloorq_f32(float32x4_t val)
{
static const float32x4_t CONST_1 = vdupq_n_f32(1.f);
const int32x4_t z = vcvtq_s32_f32(val);
const float32x4_t r = vcvtq_f32_s32(z);
return vbslq_f32(vcgtq_f32(r, val), vsubq_f32(r, CONST_1), r);
}
inline float32x2_t vinvsqrt_f32(float32x2_t x)
{
float32x2_t sqrt_reciprocal = vrsqrte_f32(x);
sqrt_reciprocal = vmul_f32(vrsqrts_f32(vmul_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
sqrt_reciprocal = vmul_f32(vrsqrts_f32(vmul_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
return sqrt_reciprocal;
}
inline float32x4_t vinvsqrtq_f32(float32x4_t x)
{
float32x4_t sqrt_reciprocal = vrsqrteq_f32(x);
sqrt_reciprocal = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
sqrt_reciprocal = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
return sqrt_reciprocal;
}
inline float32x2_t vinv_f32(float32x2_t x)
{
float32x2_t recip = vrecpe_f32(x);
recip = vmul_f32(vrecps_f32(x, recip), recip);
recip = vmul_f32(vrecps_f32(x, recip), recip);
return recip;
}
inline float32x4_t vinvq_f32(float32x4_t x)
{
float32x4_t recip = vrecpeq_f32(x);
recip = vmulq_f32(vrecpsq_f32(x, recip), recip);
recip = vmulq_f32(vrecpsq_f32(x, recip), recip);
return recip;
}
inline float32x4_t vtaylor_polyq_f32(float32x4_t x, const std::array<float32x4_t, 8> &coeffs)
{
float32x4_t A = vmlaq_f32(coeffs[0], coeffs[4], x);
float32x4_t B = vmlaq_f32(coeffs[2], coeffs[6], x);
float32x4_t C = vmlaq_f32(coeffs[1], coeffs[5], x);
float32x4_t D = vmlaq_f32(coeffs[3], coeffs[7], x);
float32x4_t x2 = vmulq_f32(x, x);
float32x4_t x4 = vmulq_f32(x2, x2);
float32x4_t res = vmlaq_f32(vmlaq_f32(A, B, x2), vmlaq_f32(C, D, x2), x4);
return res;
}
inline float32x4_t vexpq_f32(float32x4_t x)
{
static const float32x4_t CONST_LN2 = vdupq_n_f32(0.6931471805f); // ln(2)
static const float32x4_t CONST_INV_LN2 = vdupq_n_f32(1.4426950408f); // 1/ln(2)
static const float32x4_t CONST_0 = vdupq_n_f32(0.f);
static const int32x4_t CONST_NEGATIVE_126 = vdupq_n_s32(-126);
// Perform range reduction [-log(2),log(2)]
int32x4_t m = vcvtq_s32_f32(vmulq_f32(x, CONST_INV_LN2));
float32x4_t val = vmlsq_f32(x, vcvtq_f32_s32(m), CONST_LN2);
// Polynomial Approximation
float32x4_t poly = vtaylor_polyq_f32(val, exp_tab);
// Reconstruct
poly = vreinterpretq_f32_s32(vqaddq_s32(vreinterpretq_s32_f32(poly), vqshlq_n_s32(m, 23)));
poly = vbslq_f32(vcltq_s32(m, CONST_NEGATIVE_126), CONST_0, poly);
return poly;
}
inline float32x4_t vlogq_f32(float32x4_t x)
{
static const int32x4_t CONST_127 = vdupq_n_s32(127); // 127
static const float32x4_t CONST_LN2 = vdupq_n_f32(0.6931471805f); // ln(2)
// Extract exponent
int32x4_t m = vsubq_s32(vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_f32(x), 23)), CONST_127);
float32x4_t val = vreinterpretq_f32_s32(vsubq_s32(vreinterpretq_s32_f32(x), vshlq_n_s32(m, 23)));
// Polynomial Approximation
float32x4_t poly = vtaylor_polyq_f32(val, log_tab);
// Reconstruct
poly = vmlaq_f32(poly, vcvtq_f32_s32(m), CONST_LN2);
return poly;
}
inline float32x4_t vtanhq_f32(float32x4_t val)
{
static const float32x4_t CONST_1 = vdupq_n_f32(1.f);
static const float32x4_t CONST_2 = vdupq_n_f32(2.f);
static const float32x4_t CONST_MIN_TANH = vdupq_n_f32(-10.f);
static const float32x4_t CONST_MAX_TANH = vdupq_n_f32(10.f);
float32x4_t x = vminq_f32(vmaxq_f32(val, CONST_MIN_TANH), CONST_MAX_TANH);
float32x4_t exp2x = vexpq_f32(vmulq_f32(CONST_2, x));
float32x4_t num = vsubq_f32(exp2x, CONST_1);
float32x4_t den = vaddq_f32(exp2x, CONST_1);
float32x4_t tanh = vmulq_f32(num, vinvq_f32(den));
return tanh;
}
inline float32x4_t vpowq_f32(float32x4_t val, float32x4_t n)
{
return vexpq_f32(vmulq_f32(n, vlogq_f32(val)));
}
#endif /* DOXYGEN_SKIP_THIS */
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
/** Exponent polynomial coefficients */
/** Logarithm polynomial coefficients */
#ifndef DOXYGEN_SKIP_THIS
inline float16x8_t vfloorq_f16(float16x8_t val)
{
static const float16x8_t CONST_1 = vdupq_n_f16(1.f);
const int16x8_t z = vcvtq_s16_f16(val);
const float16x8_t r = vcvtq_f16_s16(z);
return vbslq_f16(vcgtq_f16(r, val), vsubq_f16(r, CONST_1), r);
}
inline float16x4_t vinvsqrt_f16(float16x4_t x)
{
float16x4_t sqrt_reciprocal = vrsqrte_f16(x);
sqrt_reciprocal = vmul_f16(vrsqrts_f16(vmul_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
sqrt_reciprocal = vmul_f16(vrsqrts_f16(vmul_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
return sqrt_reciprocal;
}
inline float16x8_t vinvsqrtq_f16(float16x8_t x)
{
float16x8_t sqrt_reciprocal = vrsqrteq_f16(x);
sqrt_reciprocal = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
sqrt_reciprocal = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
return sqrt_reciprocal;
}
inline float16x4_t vinv_f16(float16x4_t x)
{
float16x4_t recip = vrecpe_f16(x);
recip = vmul_f16(vrecps_f16(x, recip), recip);
recip = vmul_f16(vrecps_f16(x, recip), recip);
return recip;
}
inline float16x8_t vinvq_f16(float16x8_t x)
{
float16x8_t recip = vrecpeq_f16(x);
recip = vmulq_f16(vrecpsq_f16(x, recip), recip);
recip = vmulq_f16(vrecpsq_f16(x, recip), recip);
return recip;
}
inline float16x8_t vtanhq_f16(float16x8_t val)
{
const float16x8_t CONST_1 = vdupq_n_f16(1.f);
const float16x8_t CONST_2 = vdupq_n_f16(2.f);
const float16x8_t CONST_MIN_TANH = vdupq_n_f16(-10.f);
const float16x8_t CONST_MAX_TANH = vdupq_n_f16(10.f);
const float16x8_t x = vminq_f16(vmaxq_f16(val, CONST_MIN_TANH), CONST_MAX_TANH);
const float16x8_t exp2x = vexpq_f16(vmulq_f16(CONST_2, x));
const float16x8_t num = vsubq_f16(exp2x, CONST_1);
const float16x8_t den = vaddq_f16(exp2x, CONST_1);
const float16x8_t tanh = vmulq_f16(num, vinvq_f16(den));
return tanh;
}
inline float16x8_t vtaylor_polyq_f16(float16x8_t x, const std::array<float16x8_t, 8> &coeffs)
{
const float16x8_t A = vaddq_f16(coeffs[0], vmulq_f16(coeffs[4], x));
const float16x8_t B = vaddq_f16(coeffs[2], vmulq_f16(coeffs[6], x));
const float16x8_t C = vaddq_f16(coeffs[1], vmulq_f16(coeffs[5], x));
const float16x8_t D = vaddq_f16(coeffs[3], vmulq_f16(coeffs[7], x));
const float16x8_t x2 = vmulq_f16(x, x);
const float16x8_t x4 = vmulq_f16(x2, x2);
const float16x8_t res = vaddq_f16(vaddq_f16(A, vmulq_f16(B, x2)), vmulq_f16(vaddq_f16(C, vmulq_f16(D, x2)), x4));
return res;
}
inline float16x8_t vexpq_f16(float16x8_t x)
{
// TODO (COMPMID-1535) : Revisit FP16 approximations
const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x));
const float32x4_t x_low = vcvt_f32_f16(vget_low_f16(x));
const float16x8_t res = vcvt_high_f16_f32(vcvt_f16_f32(vexpq_f32(x_low)), vexpq_f32(x_high));
return res;
}
inline float16x8_t vlogq_f16(float16x8_t x)
{
// TODO (COMPMID-1535) : Revisit FP16 approximations
const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x));
const float32x4_t x_low = vcvt_f32_f16(vget_low_f16(x));
const float16x8_t res = vcvt_high_f16_f32(vcvt_f16_f32(vlogq_f32(x_low)), vlogq_f32(x_high));
return res;
}
inline float16x8_t vpowq_f16(float16x8_t val, float16x8_t n)
{
// TODO (giaiod01) - COMPMID-1535
float32x4_t n0_f32 = vcvt_f32_f16(vget_low_f16(n));
float32x4_t n1_f32 = vcvt_f32_f16(vget_high_f16(n));
float32x4_t val0_f32 = vcvt_f32_f16(vget_low_f16(val));
float32x4_t val1_f32 = vcvt_f32_f16(vget_high_f16(val));
float32x4_t res0_f32 = vexpq_f32(vmulq_f32(n0_f32, vlogq_f32(val0_f32)));
float32x4_t res1_f32 = vexpq_f32(vmulq_f32(n1_f32, vlogq_f32(val1_f32)));
return vcombine_f16(vcvt_f16_f32(res0_f32), vcvt_f16_f32(res1_f32));
}
#endif /* DOXYGEN_SKIP_THIS */
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
} // namespace arm_compute