blob: 10664119fba3a7d9d673d6bf4b4deef754dee456 [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "ConvolutionLayer.h"
#include "tests/validation/FixedPoint.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/Utils.h"
#include "tests/validation/reference/UtilsQuantizedAsymm.h"
#include "tests/framework/Asserts.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
namespace arm_compute
{
namespace test
{
namespace validation
{
namespace reference
{
namespace
{
inline bool is_valid_pixel(int i, int min, int max)
{
return (i >= min && i < max);
}
// 3D convolution for floating point type
template < typename T, typename TB, typename std::enable_if < is_floating_point<T>::value &&is_floating_point<TB>::value, int >::type = 0 >
void convolution3d(const SimpleTensor<T> &in, const SimpleTensor<T> &weights, const SimpleTensor<TB> &bias, SimpleTensor<T> &out,
int i_offset, int w_offset, int b_offset, int o_offset,
int xi, int yi, int width_in, int height_in, int depth_in, int width_weights, int height_weights)
{
const T *in_ptr = in.data() + i_offset;
const T *w_ptr = weights.data() + w_offset;
const TB *b_ptr = bias.data() + b_offset;
T *out_ptr = out.data() + o_offset;
const int half_width_weights = width_weights / 2;
const int half_height_weights = height_weights / 2;
// Reset accumulator
T acc(0);
// Compute a 2D convolution for each IFM and accumulate the result
for(int ifm = 0; ifm < depth_in; ++ifm)
{
// Compute the offset for the input slice
const int offset_slice_in = xi + yi * width_in + ifm * width_in * height_in;
// Compute 2D convolution
for(int yk = -half_height_weights; yk <= half_height_weights; ++yk)
{
for(int xk = -half_width_weights; xk <= half_width_weights; ++xk)
{
// Check if the pixel is out-of-bound
if(is_valid_pixel(xi + xk, 0, width_in) && is_valid_pixel(yi + yk, 0, height_in))
{
const int idx = xk + half_width_weights;
const int idy = yk + half_height_weights;
const T i_value = in_ptr[offset_slice_in + xk + yk * width_in];
const T w_value = w_ptr[idx + idy * width_weights + ifm * width_weights * height_weights];
acc += i_value * w_value;
}
}
}
}
// Accumulate the bias and store the result
*out_ptr = acc + (*b_ptr);
}
// 3D convolution for fixed point type
template < typename T, typename TB, typename std::enable_if < std::is_integral<T>::value &&std::is_integral<TB>::value, int >::type = 0 >
void convolution3d(const SimpleTensor<T> &in, const SimpleTensor<T> &weights, const SimpleTensor<TB> &bias, SimpleTensor<T> &out,
int i_offset, int w_offset, int b_offset, int o_offset,
int xi, int yi, int width_in, int height_in, int depth_in, int width_weights, int height_weights)
{
const T *in_ptr = in.data() + i_offset;
const T *w_ptr = weights.data() + w_offset;
const T *b_ptr = bias.data() + b_offset;
T *out_ptr = out.data() + o_offset;
int fixed_point_position = in.fixed_point_position();
const int half_width_weights = width_weights / 2;
const int half_height_weights = height_weights / 2;
using namespace fixed_point_arithmetic;
using promoted_type = fixed_point_arithmetic::traits::promote_t<T>;
// Reset accumulator
fixed_point<promoted_type> acc(0, fixed_point_position);
// Compute a 2D convolution for each IFM and accumulate the result
for(int ifm = 0; ifm < depth_in; ++ifm)
{
// Compute the offset for the input slice
const int offset_slice_in = xi + yi * width_in + ifm * width_in * height_in;
// Compute 2D convolution
for(int yk = -half_height_weights; yk <= half_height_weights; ++yk)
{
for(int xk = -half_width_weights; xk <= half_width_weights; ++xk)
{
// Check if the pixel is out-of-bound
if(is_valid_pixel(xi + xk, 0, width_in) && is_valid_pixel(yi + yk, 0, height_in))
{
const int idx = xk + half_width_weights;
const int idy = yk + half_height_weights;
const fixed_point<promoted_type> i_value(in_ptr[offset_slice_in + xk + yk * width_in], fixed_point_position, true);
const fixed_point<promoted_type> w_value(w_ptr[idx + idy * width_weights + ifm * width_weights * height_weights], fixed_point_position, true);
const fixed_point<promoted_type> iw = i_value * w_value;
acc = iw + acc;
}
}
}
}
// Get the bias
const fixed_point<promoted_type> b(*b_ptr, fixed_point_position, true);
// Accumulate the bias and covert back
acc = acc + b;
fixed_point<T> res(acc);
*out_ptr = res.raw();
}
// 3D convolution for QASYMM8 type
template <>
void convolution3d(const SimpleTensor<uint8_t> &in, const SimpleTensor<uint8_t> &weights, const SimpleTensor<int32_t> &bias, SimpleTensor<uint8_t> &out,
int i_offset, int w_offset, int b_offset, int o_offset,
int xi, int yi, int width_in, int height_in, int depth_in, int width_weights, int height_weights)
{
const uint8_t *in_ptr = in.data() + i_offset;
const uint8_t *w_ptr = weights.data() + w_offset;
const int32_t *b_ptr = bias.data() + b_offset;
uint8_t *out_ptr = out.data() + o_offset;
const int input_offset = -in.quantization_info().offset;
const float input_scale = in.quantization_info().scale;
const int weights_offset = -weights.quantization_info().offset;
const float weights_scale = weights.quantization_info().scale;
const int output_offset = out.quantization_info().offset;
const float output_scale = out.quantization_info().scale;
int output_multiplier = 0;
int output_shift = 0;
const float multiplier = input_scale * weights_scale / output_scale;
arm_compute::quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
const int half_width_weights = width_weights / 2;
const int half_height_weights = height_weights / 2;
// Reset accumulator
int32_t acc(0);
// Compute a 2D convolution for each IFM and accumulate the result
for(int ifm = 0; ifm < depth_in; ++ifm)
{
// Compute the offset for the input slice
const int offset_slice_in = xi + yi * width_in + ifm * width_in * height_in;
// Compute 2D convolution
for(int yk = -half_height_weights; yk <= half_height_weights; ++yk)
{
for(int xk = -half_width_weights; xk <= half_width_weights; ++xk)
{
// Check if the pixel is out-of-bound
if(is_valid_pixel(xi + xk, 0, width_in) && is_valid_pixel(yi + yk, 0, height_in))
{
const int idx = xk + half_width_weights;
const int idy = yk + half_height_weights;
const uint8_t i_value = in_ptr[offset_slice_in + xk + yk * width_in];
const uint8_t w_value = w_ptr[idx + idy * width_weights + ifm * width_weights * height_weights];
acc += (i_value + input_offset) * (w_value + weights_offset);
}
}
}
}
// Accumulate the bias
acc += (*b_ptr);
acc = asymm_rounding_divide_by_pow2(asymm_int_mult(acc, output_multiplier), output_shift);
acc += output_offset;
acc = clamp<int32_t>(acc, 0, 255);
// Store the result
*out_ptr = acc;
}
} // namespace
template <typename T, typename TB>
SimpleTensor<T> convolution_layer(const SimpleTensor<T> &src, const SimpleTensor<T> &weights, const SimpleTensor<TB> &bias, const TensorShape &output_shape, const PadStrideInfo &info)
{
// Create reference
SimpleTensor<T> dst{ output_shape, src.data_type(), 1, src.fixed_point_position(), src.quantization_info() };
// Compute reference
const int width_in = src.shape().x();
const int height_in = src.shape().y();
const int depth_in = src.shape().z();
const int width_out = dst.shape().x();
const int height_out = dst.shape().y();
const int depth_out = dst.shape().z();
const int width_weights = weights.shape().x();
const int height_weights = weights.shape().y();
const int depth_weights = weights.shape().z();
const int pad_left = std::min(static_cast<int>(info.pad_left()), width_weights / 2);
const int pad_top = std::min(static_cast<int>(info.pad_top()), height_weights / 2);
const int pad_right = std::min(static_cast<int>(info.pad_right()), width_weights / 2);
const int pad_bottom = std::min(static_cast<int>(info.pad_bottom()), height_weights / 2);
const int start_xi = width_weights / 2 - pad_left;
const int start_yi = height_weights / 2 - pad_top;
const int end_xi = width_in + pad_left - width_weights / 2 + pad_right - width_weights / 2;
const int end_yi = height_in + pad_top - height_weights / 2 + pad_bottom - height_weights / 2;
const int stride_xi = info.stride().first;
const int stride_yi = info.stride().second;
const int num_batches = src.shape().total_size() / (width_in * height_in * depth_in);
for(int r = 0; r < num_batches; ++r)
{
for(int yi = start_yi; yi < start_yi + end_yi; yi += stride_yi)
{
for(int xi = start_xi; xi < start_xi + end_xi; xi += stride_xi)
{
for(int ofm = 0; ofm < depth_out; ++ofm)
{
// Compute input and output offsets
const int offset_in = r * width_in * height_in * depth_in;
const int xo = (xi - start_xi) / stride_xi;
const int yo = (yi - start_yi) / stride_yi;
const int offset_out = xo + yo * width_out + ofm * width_out * height_out + r * width_out * height_out * depth_out;
ARM_COMPUTE_ASSERT(xo < width_out);
ARM_COMPUTE_ASSERT(yo < height_out);
// Compute 3D convolution
convolution3d(src, weights, bias, dst,
offset_in, ofm * width_weights * height_weights * depth_weights, ofm, offset_out,
xi, yi,
width_in, height_in, depth_in,
width_weights, height_weights);
}
}
}
}
return dst;
}
template SimpleTensor<float> convolution_layer(const SimpleTensor<float> &src, const SimpleTensor<float> &weights, const SimpleTensor<float> &bias, const TensorShape &output_shape,
const PadStrideInfo &info);
template SimpleTensor<half> convolution_layer(const SimpleTensor<half> &src, const SimpleTensor<half> &weights, const SimpleTensor<half> &bias, const TensorShape &output_shape,
const PadStrideInfo &info);
template SimpleTensor<qint8_t> convolution_layer(const SimpleTensor<qint8_t> &src, const SimpleTensor<qint8_t> &weights, const SimpleTensor<qint8_t> &bias, const TensorShape &output_shape,
const PadStrideInfo &info);
template SimpleTensor<qint16_t> convolution_layer(const SimpleTensor<qint16_t> &src, const SimpleTensor<qint16_t> &weights, const SimpleTensor<qint16_t> &bias, const TensorShape &output_shape,
const PadStrideInfo &info);
template SimpleTensor<uint8_t> convolution_layer(const SimpleTensor<uint8_t> &src, const SimpleTensor<uint8_t> &weights, const SimpleTensor<int32_t> &bias, const TensorShape &output_shape,
const PadStrideInfo &info);
} // namespace reference
} // namespace validation
} // namespace test
} // namespace arm_compute