blob: c61d851ad87cd93fd2fd986370be7abbeaa3b562 [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEActivationLayerKernel.h"
#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/NEAsymm.h"
#include "arm_compute/core/NEON/NEFixedPoint.h"
#include "arm_compute/core/NEON/NEMath.h"
#include "arm_compute/core/NEON/wrapper/wrapper.h"
#include "arm_compute/core/QAsymm8.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include <arm_neon.h>
#include <array>
#include <cmath>
#include <map>
using namespace arm_compute;
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output)
{
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8, DataType::QASYMM8, DataType::F16, DataType::F32);
// Checks performed when output is configured
if((output != nullptr) && (output->total_size() != 0))
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output)
{
// Configure kernel window
Window win = calculate_max_window(*input, Steps());
if(output != nullptr)
{
// Output auto inizialitation if not yet initialized
auto_init_if_empty(*output, *input->clone());
// NEActivationLayerKernel doesn't need padding so update_window_and_padding() can be skipped
Coordinates coord;
coord.set_num_dimensions(output->num_dimensions());
output->set_valid_region(ValidRegion(coord, output->tensor_shape()));
}
return std::make_pair(Status{}, win);
}
} // namespace
NEActivationLayerKernel::NEActivationLayerKernel()
: _input(nullptr), _output(nullptr), _func(nullptr), _act_info(ActivationFunction::LOGISTIC)
{
}
void NEActivationLayerKernel::configure(ITensor *input, ITensor *output, ActivationLayerInfo activation_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input);
_input = input;
_act_info = activation_info;
_output = input;
if(output != nullptr)
{
_output = output;
}
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), (output != nullptr) ? output->info() : nullptr));
ARM_COMPUTE_ERROR_ON_MSG((input->info()->data_type() == DataType::QASYMM8) && (activation_info.activation() != ActivationLayerInfo::ActivationFunction::RELU)
&& (activation_info.activation() != ActivationLayerInfo::ActivationFunction::BOUNDED_RELU) && (activation_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU),
"For QASYMM8 only relu and lower/upper bounded relu are supported");
// Activation functions : FP32
static std::map<ActivationFunction, ActivationFunctionExecutorPtr> act_map_f32 =
{
{ ActivationFunction::ABS, &NEActivationLayerKernel::activation<ActivationFunction::ABS, float> },
{ ActivationFunction::LINEAR, &NEActivationLayerKernel::activation<ActivationFunction::LINEAR, float> },
{ ActivationFunction::LOGISTIC, &NEActivationLayerKernel::activation<ActivationFunction::LOGISTIC, float> },
{ ActivationFunction::RELU, &NEActivationLayerKernel::activation<ActivationFunction::RELU, float> },
{ ActivationFunction::BOUNDED_RELU, &NEActivationLayerKernel::activation<ActivationFunction::BOUNDED_RELU, float> },
{ ActivationFunction::LU_BOUNDED_RELU, &NEActivationLayerKernel::activation<ActivationFunction::LU_BOUNDED_RELU, float> },
{ ActivationFunction::LEAKY_RELU, &NEActivationLayerKernel::activation<ActivationFunction::LEAKY_RELU, float> },
{ ActivationFunction::SOFT_RELU, &NEActivationLayerKernel::activation<ActivationFunction::SOFT_RELU, float> },
{ ActivationFunction::SQRT, &NEActivationLayerKernel::activation<ActivationFunction::SQRT, float> },
{ ActivationFunction::SQUARE, &NEActivationLayerKernel::activation<ActivationFunction::SQUARE, float> },
{ ActivationFunction::TANH, &NEActivationLayerKernel::activation<ActivationFunction::TANH, float> },
};
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
// Activation functions : FP16
static std::map<ActivationFunction, ActivationFunctionExecutorPtr> act_map_f16 =
{
{ ActivationFunction::ABS, &NEActivationLayerKernel::activation<ActivationFunction::ABS, float16_t> },
{ ActivationFunction::LINEAR, &NEActivationLayerKernel::activation<ActivationFunction::LINEAR, float16_t> },
{ ActivationFunction::LOGISTIC, &NEActivationLayerKernel::activation<ActivationFunction::LOGISTIC, float16_t> },
{ ActivationFunction::RELU, &NEActivationLayerKernel::activation<ActivationFunction::RELU, float16_t> },
{ ActivationFunction::BOUNDED_RELU, &NEActivationLayerKernel::activation<ActivationFunction::BOUNDED_RELU, float16_t> },
{ ActivationFunction::LU_BOUNDED_RELU, &NEActivationLayerKernel::activation<ActivationFunction::LU_BOUNDED_RELU, float16_t> },
{ ActivationFunction::LEAKY_RELU, &NEActivationLayerKernel::activation<ActivationFunction::LEAKY_RELU, float16_t> },
{ ActivationFunction::SOFT_RELU, &NEActivationLayerKernel::activation<ActivationFunction::SOFT_RELU, float16_t> },
{ ActivationFunction::SQRT, &NEActivationLayerKernel::activation<ActivationFunction::SQRT, float16_t> },
{ ActivationFunction::SQUARE, &NEActivationLayerKernel::activation<ActivationFunction::SQUARE, float16_t> },
{ ActivationFunction::TANH, &NEActivationLayerKernel::activation<ActivationFunction::TANH, float16_t> },
};
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC*/
// Activation functions : QASYMM8
static std::map<ActivationFunction, ActivationFunctionExecutorPtr> act_map_qasymm8 =
{
{ ActivationFunction::BOUNDED_RELU, &NEActivationLayerKernel::activation<ActivationFunction::BOUNDED_RELU, qasymm8_t> },
{ ActivationFunction::LU_BOUNDED_RELU, &NEActivationLayerKernel::activation<ActivationFunction::LU_BOUNDED_RELU, qasymm8_t> },
{ ActivationFunction::RELU, &NEActivationLayerKernel::activation<ActivationFunction::RELU, qasymm8_t> },
};
switch(input->info()->data_type())
{
case DataType::QASYMM8:
_func = act_map_qasymm8[activation_info.activation()];
break;
case DataType::F32:
_func = act_map_f32[activation_info.activation()];
break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
_func = act_map_f16[activation_info.activation()];
break;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
default:
ARM_COMPUTE_ERROR("Unsupported data type.");
}
// Configure kernel window
auto win_config = validate_and_configure_window(input->info(), (output != nullptr) ? output->info() : nullptr);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICPPKernel::configure(win_config.second);
}
template <ActivationLayerInfo::ActivationFunction F, typename T>
typename std::enable_if<arm_compute::utils::traits::is_floating_point<T>::value, void>::type
NEActivationLayerKernel::activation(const Window &window)
{
/** NEON vector tag type. */
using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
const int window_step_x = 16 / sizeof(T);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const ActivationFunction act = F;
Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input(_input, win_collapsed);
Iterator output(_output, win_collapsed);
const auto const_1 = wrapper::vdup_n(static_cast<T>(1.f), ExactTagType{});
const auto const_0 = wrapper::vdup_n(static_cast<T>(0.f), ExactTagType{});
const auto va = wrapper::vdup_n(static_cast<T>(_act_info.a()), ExactTagType{});
const auto vb = wrapper::vdup_n(static_cast<T>(_act_info.b()), ExactTagType{});
const auto a = static_cast<T>(_act_info.a());
const auto b = static_cast<T>(_act_info.b());
execute_window_loop(win_collapsed, [&](const Coordinates & id)
{
const auto input_ptr = reinterpret_cast<const T *>(input.ptr());
const auto output_ptr = reinterpret_cast<T *>(output.ptr());
wrapper::traits::neon_bitvector_t<T, wrapper::traits::BitWidth::W128> tmp;
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto vin = wrapper::vloadq(input_ptr + x);
switch(act)
{
case ActivationFunction::ABS:
tmp = wrapper::vabs(vin);
break;
case ActivationFunction::LINEAR:
tmp = wrapper::vmla(vb, va, vin);
break;
case ActivationFunction::LOGISTIC:
tmp = wrapper::vinv(wrapper::vadd(const_1, wrapper::vexpq(wrapper::vneg(vin))));
break;
case ActivationFunction::RELU:
tmp = wrapper::vmax(const_0, vin);
break;
case ActivationFunction::BOUNDED_RELU:
tmp = wrapper::vmin(va, wrapper::vmax(const_0, vin));
break;
case ActivationFunction::LU_BOUNDED_RELU:
tmp = wrapper::vmin(va, wrapper::vmax(vb, vin));
break;
case ActivationFunction::LEAKY_RELU:
tmp = wrapper::vbsl(wrapper::vcgt(vin, const_0), vin, wrapper::vmul(va, vin));
break;
case ActivationFunction::SOFT_RELU:
tmp = wrapper::vlog(wrapper::vadd(const_1, wrapper::vexpq(vin)));
break;
case ActivationFunction::SQRT:
tmp = wrapper::vinv(wrapper::vinvsqrt(vin));
break;
case ActivationFunction::SQUARE:
tmp = wrapper::vmul(vin, vin);
break;
case ActivationFunction::TANH:
tmp = wrapper::vmul(va, wrapper::vtanh(wrapper::vmul(vb, vin)));
break;
default:
ARM_COMPUTE_ERROR("Unsupported activation function");
}
wrapper::vstore(output_ptr + x, tmp);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
const T in = *(reinterpret_cast<const T *>(input_ptr + x));
T tmp;
switch(act)
{
case ActivationFunction::ABS:
tmp = std::abs(in);
break;
case ActivationFunction::LINEAR:
tmp = a * in + b;
break;
case ActivationFunction::LOGISTIC:
tmp = static_cast<T>(1) / (static_cast<T>(1) + std::exp(-in));
break;
case ActivationFunction::RELU:
tmp = std::max<T>(static_cast<T>(0), in);
break;
case ActivationFunction::BOUNDED_RELU:
tmp = std::min<T>(a, std::max(static_cast<T>(0), in));
break;
case ActivationFunction::LU_BOUNDED_RELU:
tmp = std::min<T>(a, std::max<T>(b, in));
break;
case ActivationFunction::LEAKY_RELU:
tmp = (in > 0) ? in : a * in;
break;
case ActivationFunction::SOFT_RELU:
tmp = std::log(static_cast<T>(1) + std::exp(in));
break;
case ActivationFunction::SQRT:
tmp = std::sqrt(in);
break;
case ActivationFunction::SQUARE:
tmp = in * in;
break;
case ActivationFunction::TANH:
tmp = a * std::tanh(b * in);
break;
default:
ARM_COMPUTE_ERROR("Unsupported activation function");
}
*(output_ptr + x) = tmp;
}
},
input, output);
}
template <ActivationLayerInfo::ActivationFunction F, typename T>
typename std::enable_if<std::is_same<T, qasymm8_t>::value, void>::type NEActivationLayerKernel::activation(const Window &window)
{
const int window_step_x = 16 / sizeof(T);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const ActivationFunction act = F;
Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input(_input, win_collapsed);
Iterator output(_output, win_collapsed);
const QuantizationInfo qi_in = _input->info()->quantization_info();
const QuantizationInfo qi_out = _output->info()->quantization_info();
const qasymm8x16_t va = vdupq_n_u8(sqcvt_qasymm8_f32(_act_info.a(), qi_in.scale, qi_in.offset));
const qasymm8x16_t vb = vdupq_n_u8(sqcvt_qasymm8_f32(_act_info.b(), qi_in.scale, qi_in.offset));
const qasymm8_t a = sqcvt_qasymm8_f32(_act_info.a(), qi_in.scale, qi_in.offset);
const qasymm8_t b = sqcvt_qasymm8_f32(_act_info.b(), qi_in.scale, qi_in.offset);
const qasymm8_t const_0 = sqcvt_qasymm8_f32(0.f, qi_in.scale, qi_in.offset);
const qasymm8x16_t vconst_0 = vdupq_n_u8(const_0);
// Initialise scale/offset for re-quantization
float s = qi_in.scale / qi_out.scale;
float o = -qi_in.offset * s + qi_out.offset;
float32x4_t vs = vdupq_n_f32(s);
float32x4_t vo = vdupq_n_f32(o);
execute_window_loop(win_collapsed, [&](const Coordinates & id)
{
const auto input_ptr = reinterpret_cast<const T *>(input.ptr());
const auto output_ptr = reinterpret_cast<T *>(output.ptr());
wrapper::traits::neon_bitvector_t<T, wrapper::traits::BitWidth::W128> tmp;
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto vin = wrapper::vloadq(input_ptr + x);
if(act == ActivationFunction::RELU)
{
// Perform activation
tmp = vmaxq_u8(vconst_0, vin);
// Re-quantize to new output space
tmp = vmlaq_qasymm8(tmp, vs, vo);
}
else if(act == ActivationFunction::BOUNDED_RELU)
{
// Perform activation
tmp = vminq_u8(va, vmaxq_u8(vconst_0, vin));
// Re-quantize to new output space
tmp = vmlaq_qasymm8(tmp, vs, vo);
}
else if(act == ActivationFunction::LU_BOUNDED_RELU)
{
// Perform activation
tmp = vminq_u8(va, vmaxq_u8(vb, vin));
// Re-quantize to new output space
tmp = vmlaq_qasymm8(tmp, vs, vo);
}
else
{
ARM_COMPUTE_ERROR("Unsupported activation function");
}
wrapper::vstore(output_ptr + x, tmp);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
T in = *(reinterpret_cast<const T *>(input_ptr + x));
T tmp;
if(act == ActivationFunction::RELU)
{
tmp = std::max(const_0, in);
tmp = std::max<int32_t>(0, std::min<int32_t>(tmp * s + o, 255));
}
else if(act == ActivationFunction::BOUNDED_RELU)
{
tmp = std::min(a, std::max(const_0, in));
tmp = std::max<int32_t>(0, std::min<int32_t>(tmp * s + o, 255));
}
else if(act == ActivationFunction::LU_BOUNDED_RELU)
{
tmp = std::min(a, std::max(b, in));
tmp = std::max<int32_t>(0, std::min<int32_t>(tmp * s + o, 255));
}
else
{
ARM_COMPUTE_ERROR("Unsupported activation function");
}
*(output_ptr + x) = tmp;
}
},
input, output);
}
Status NEActivationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const ActivationLayerInfo &act_info)
{
ARM_COMPUTE_UNUSED(act_info);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), (output != nullptr) ? output->clone().get() : nullptr).first);
return Status{};
}
void NEActivationLayerKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
(this->*_func)(window);
}