blob: 4e5481d1db6f9ebf3493bff4df17c3a591184144 [file] [log] [blame]
/*
* Copyright (c) 2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#include "tile_helpers.h" // Needed for GET_SPATIAL_IDX()
#if defined(POOL_AVG) || defined(POOL_L2)
#define POOL_OP(x, y) ((x) + (y))
#else /* defined(POOL_AVG) || defined(POOL_L2) */
#define POOL_OP(x, y) (fmax((x), (y)))
#endif /* defined(POOL_AVG) || defined(POOL_L2) */
#define SQRT_OP(x) sqrt((x))
#if defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(SRC_DEPTH) && defined(DST_CHANNELS) && defined(DST_HEIGHT) && defined(DST_DEPTH) && defined(DST_BATCH_SIZE) && defined(ACC_DATA_TYPE)
#if defined(POOL_SIZE_X) && defined(POOL_SIZE_Y) && defined(POOL_SIZE_Z)
/** Performs 3d pooling layer of size equal to MxNXD. This OpenCL kernel can perform the following pooling types:
* -# max, -DPOOL_MAX must be passed at compile time
* -# average, -DPOOL_AVG must be passed at compile time. If padding has to be excluded, -DEXCLUDE_PADDING should be passed at compile time
* -# l2 normalisation, -DPOOL_L2 must be passed at compile time
*
* @note Datatype must be passed at compile type using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F32/F16
* @note Accumulation data type must be passed at compile time using -DACC_DATA_TYPE e.g. -DACC_DATA_TYPE=float
* @note If -DFP_MIXED_PRECISION is passed at compile time, the kernel will use F32 for the partial result
* @note Pool size must be passed at compile time using -DPOOL_SIZE_X, -DPOOL_SIZE_Y, and -DPOOL_SIZE_Z. e.g. -DPOOL_SIZE_X=4, -DPOOL_SIZE_Y=4, -DPOOL_SIZE_Z=2
* @note Input tensor width, height and depth must be passed at compile time using -DSRC_WIDTH, -DSRC_HEIGHT, and -DSRC_DEPTH
* @note Output tensor height, channels, depth, and batch size must be passed at compile time using -DDST_HEIGHT, -DDST_CHANNELS, -DDST_DEPTH, and -DDST_BATCH_SIZE
* @note Pool strides must be passed at compile time using -DSTRIDE_X, -DSTRIDE_Y and -DSTRIDE_Z which are the steps of the window along the x, y and z directions
* @note Pool pads must be passed at compile time using -DPAD_X, -DPAD_Y, -DPAD_Z
* @note Vector size must be passed at compile time using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
* @note Leftover vector size must be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
* @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0
*
* @param[in] input_ptr Pointer to the source tensor. Supported data types: F32/F16
* @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes)
* @param[in] input_step_w input_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] input_stride_v Stride of the source tensor in V dimension (in bytes)
* @param[in] input_step_v input_stride_v * number of elements along V processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr
* @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_stride_w Stride of the destination tensor in W dimension (in bytes)
* @param[in] output_step_w output_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] output_stride_v Stride of the destination tensor in V dimension (in bytes)
* @param[in] output_step_v output_stride_v * number of elements along V processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void pooling_3d_layer_MxN_ndhwc(
TENSOR5D_DECLARATION(input),
TENSOR5D_DECLARATION(output))
{
// Note: If C is not multiple of VEC_SIZE, we shift back of VEC_SIZE_LEFTOVER elements to compute the leftover elements for get_global_id(0) == 0
// Note: If C is less than VEC_SIZE, VEC_SIZE should be SHRINKED to the closest smaller VEC_SIZE. This operation is performed on the host side
int idx_out_c = GET_SPATIAL_IDX(0, VEC_SIZE, VEC_SIZE_LEFTOVER);
int idx_out_w = GET_SPATIAL_IDX(1, 1, 0);
// The depth size dimension and the batch size dimension are collapsed over the height dimension
int idx_out_h = GET_SPATIAL_IDX(2, 1, 0) % DST_HEIGHT;
int idx_out_d = (GET_SPATIAL_IDX(2, 1, 0) / DST_HEIGHT) % DST_DEPTH;
int idx_out_n = (GET_SPATIAL_IDX(2, 1, 0) / DST_HEIGHT) / DST_DEPTH;
__global unsigned char *in_base_ptr = input_ptr + input_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_n * input_stride_v;
__global unsigned char *out_base_ptr = output_ptr + output_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_w * output_stride_y + idx_out_h * output_stride_z + idx_out_d *
output_stride_w + idx_out_n * output_stride_v;
VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
res0 = INITIAL_VALUE;
int idx_in_w = idx_out_w * STRIDE_X - (int)PAD_X;
int idx_in_h = idx_out_h * STRIDE_Y - (int)PAD_Y;
int idx_in_d = idx_out_d * STRIDE_Z - (int)PAD_Z;
// The start of width to consider in calculation should exclude padding
int pool_x_s = max((int)0, -idx_in_w);
// Assumed Symmetric Padding (left padding = right padding = PAD_X), the filter end should be either the pool width or what is remaining from current pos to the (src width + pad right)
int pool_x_e = min((int)POOL_SIZE_X, (int)SRC_WIDTH + PAD_X - idx_in_w);
int pool_y_s = max((int)0, -idx_in_h);
int pool_y_e = min((int)POOL_SIZE_Y, (int)SRC_HEIGHT + PAD_Y - idx_in_h);
int pool_z_s = max((int)0, -idx_in_d);
int pool_z_e = min((int)POOL_SIZE_Z, (int)SRC_DEPTH + PAD_Z - idx_in_d);
// The filter size with all padding in all directions considered.
int filter_size = pool_z_e * pool_y_e * pool_x_e;
// The end of width to consider in calculation should exclude PAD_X
pool_x_e = min(pool_x_e, SRC_WIDTH - idx_in_w);
pool_y_e = min(pool_y_e, SRC_HEIGHT - idx_in_h);
pool_z_e = min(pool_z_e, SRC_DEPTH - idx_in_d);
#if defined(EXCLUDE_PADDING)
filter_size = (pool_z_e - pool_z_s) * (pool_y_e - pool_y_s) * (pool_x_e - pool_x_s);
#endif // defined(EXCLUDE_PADDING)
#if POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && POOL_SIZE_Z == SRC_DEPTH && PAD_X == 0 && PAD_Y == 0 && PAD_Z == 0
// Global pooling path
for(int z = 0; z < POOL_SIZE_Z; ++z)
{
int depth_offset_src = (z + idx_in_d) * input_stride_w;
for(int y = 0; y < POOL_SIZE_Y; ++y)
{
int height_offset_src = (y + idx_in_h) * input_stride_z;
#pragma unroll 8
for(int x = 0; x < POOL_SIZE_X; ++x)
{
int width_offset_src = (x + idx_in_w) * input_stride_y;
#else // POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && POOL_SIZE_Z == SRC_DEPTH && PAD_X == 0 && PAD_Y == 0 && PAD_Z == 0
for(int z = pool_z_s; z < pool_z_e; ++z)
{
int depth_offset_src = (z + idx_in_d) * input_stride_w;
for(int y = pool_y_s; y < pool_y_e; ++y)
{
int height_offset_src = (y + idx_in_h) * input_stride_z;
#pragma unroll 8
for(int x = pool_x_s; x < pool_x_e; ++x)
{
int width_offset_src = (x + idx_in_w) * input_stride_y;
#endif // POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && POOL_SIZE_Z == SRC_DEPTH && PAD_X == 0 && PAD_Y == 0 && PAD_Z == 0
VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
data0;
#if defined(FP_MIXED_PRECISION)
// In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE
data0 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + width_offset_src + height_offset_src + depth_offset_src)),
VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
#else // defined(FP_MIXED_PRECISION)
data0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + width_offset_src + height_offset_src + depth_offset_src));
#endif // defined(FP_MIXED_PRECISION)
#if defined(POOL_L2)
// Raise to power of 2 for L2 Pooling
data0 *= data0;
#endif // defined(POOL_L2)
res0 = POOL_OP(res0, data0);
}
}
}
#if defined(POOL_AVG) || defined(POOL_L2)
res0 /= (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))filter_size;
#endif // defined(POOL_AVG) || defined(POOL_L2)
#if defined(POOL_L2)
// Take square root of the result in L2 pooling
res0 = SQRT_OP(res0);
#endif // defined(POOL_L2)
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
out_q0 = CONVERT(res0, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE));
// Store result
#if defined(QUANTIZED)
STORE_VECTOR_SELECT(out_q, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
#elif defined(FP_MIXED_PRECISION)
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
res_converted0 = CONVERT(res0, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE));
STORE_VECTOR_SELECT(res_converted, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
#else // defined(FP_MIXED_PRECISION)
STORE_VECTOR_SELECT(res, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
#endif // defined(FP_MIXED_PRECISION)
}
#endif // defined(POOL_SIZE_X) && defined(POOL_SIZE_Y) && defined(POOL_SIZE_Z)
#endif // defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(SRC_DEPTH) && defined(DST_CHANNELS) && defined(DST_HEIGHT) && defined(DST_DEPTH) && defined(DST_BATCH_SIZE) && defined(ACC_DATA_TYPE)