blob: 8237fe17002b97b7b7e42dfa7b97169795286abe [file] [log] [blame]
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers_asymm.h"
#undef CONVERT_SAT_STR
#undef CONVERT_SAT
#if defined(DATA_TYPE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH) && defined(OUTPUT_MULTIPLIER) && defined(OUTPUT_SHIFT)
#define CONVERT_SAT_STR(x, type) (convert_##type##8_sat((x)))
#define CONVERT_SAT(x, type) CONVERT_SAT_STR(x, type)
#if defined(DATA_LAYOUT_NHWC)
#if KERNEL_SIZE == 9
#if STRIDE_X == 1
#define CONVOLUTION1x9(acc, src_ptr, weights_ptr) CONVOLUTION1x9_STRIDE1(acc, src_ptr, weights_ptr)
#elif STRIDE_X == 2
#define CONVOLUTION1x9(acc, src_ptr, weights_ptr) CONVOLUTION1x9_STRIDE2(acc, src_ptr, weights_ptr)
#else /* STRIDE_X not equals 1 or 2 */
#error "STRIDE_X larger than 2 is not supported"
#endif /* STRIDE_X */
#define CONVOLUTION1x9_STRIDE1(acc, src_ptr, weights_ptr) \
({ \
int8 weights_values0 = 0; \
int weights_value1 = 0; \
weights_values0.s0 = convert_int(*(weights_ptr + 0 * weights_stride_y)); \
weights_values0.s1 = convert_int(*(weights_ptr + 1 * weights_stride_y)); \
weights_values0.s2 = convert_int(*(weights_ptr + 2 * weights_stride_y)); \
weights_values0.s3 = convert_int(*(weights_ptr + 3 * weights_stride_y)); \
weights_values0.s4 = convert_int(*(weights_ptr + 4 * weights_stride_y)); \
weights_values0.s5 = convert_int(*(weights_ptr + 5 * weights_stride_y)); \
weights_values0.s6 = convert_int(*(weights_ptr + 6 * weights_stride_y)); \
weights_values0.s7 = convert_int(*(weights_ptr + 7 * weights_stride_y)); \
weights_value1 = convert_int(*(weights_ptr + 8 * weights_stride_y)); \
\
int8 src0 = 0; \
int8 src1 = 0; \
src0.s0 = convert_int(*(src_ptr + 0 * weights_stride_y)); \
src0.s1 = convert_int(*(src_ptr + 1 * weights_stride_y)); \
src0.s2 = convert_int(*(src_ptr + 2 * weights_stride_y)); \
src0.s3 = convert_int(*(src_ptr + 3 * weights_stride_y)); \
src0.s4 = convert_int(*(src_ptr + 4 * weights_stride_y)); \
src0.s5 = convert_int(*(src_ptr + 5 * weights_stride_y)); \
src0.s6 = convert_int(*(src_ptr + 6 * weights_stride_y)); \
src0.s7 = convert_int(*(src_ptr + 7 * weights_stride_y)); \
src1.s0 = convert_int(*(src_ptr + 8 * weights_stride_y)); \
src1.s1 = convert_int(*(src_ptr + 9 * weights_stride_y)); \
src1.s2 = convert_int(*(src_ptr + 10 * weights_stride_y)); \
src1.s3 = convert_int(*(src_ptr + 11 * weights_stride_y)); \
src1.s4 = convert_int(*(src_ptr + 12 * weights_stride_y)); \
src1.s5 = convert_int(*(src_ptr + 13 * weights_stride_y)); \
src1.s6 = convert_int(*(src_ptr + 14 * weights_stride_y)); \
src1.s7 = convert_int(*(src_ptr + 15 * weights_stride_y)); \
\
acc += src0 * (int8)weights_values0.s0; \
acc += (int8)(src0.s1234, src0.s567, src1.s0) * (int8)weights_values0.s1; \
acc += (int8)(src0.s234, src0.s567, src1.s01) * (int8)weights_values0.s2; \
acc += (int8)(src0.s345, src0.s67, src1.s012) * (int8)weights_values0.s3; \
acc += (int8)(src0.s4567, src1.s0123) * (int8)weights_values0.s4; \
acc += (int8)(src0.s567, src1.s0123, src1.s4) * (int8)weights_values0.s5; \
acc += (int8)(src0.s67, src1.s012, src1.s345) * (int8)weights_values0.s6; \
acc += (int8)(src0.s7, src1.s0123, src1.s456) * (int8)weights_values0.s7; \
acc += src1 * (int8)weights_value1; \
})
#define CONVOLUTION1x9_STRIDE2(acc, src_ptr, weights_ptr) \
({ \
int8 weights_values0 = 0; \
int weights_value1 = 0; \
weights_values0.s0 = convert_int(*(weights_ptr + 0 * weights_stride_y)); \
weights_values0.s1 = convert_int(*(weights_ptr + 1 * weights_stride_y)); \
weights_values0.s2 = convert_int(*(weights_ptr + 2 * weights_stride_y)); \
weights_values0.s3 = convert_int(*(weights_ptr + 3 * weights_stride_y)); \
weights_values0.s4 = convert_int(*(weights_ptr + 4 * weights_stride_y)); \
weights_values0.s5 = convert_int(*(weights_ptr + 5 * weights_stride_y)); \
weights_values0.s6 = convert_int(*(weights_ptr + 6 * weights_stride_y)); \
weights_values0.s7 = convert_int(*(weights_ptr + 7 * weights_stride_y)); \
weights_value1 = convert_int(*(weights_ptr + 8 * weights_stride_y)); \
\
int16 src0 = 0; \
int8 src1 = 0; \
src0.s0 = convert_int(*(src_ptr + 0 * weights_stride_y)); \
src0.s1 = convert_int(*(src_ptr + 1 * weights_stride_y)); \
src0.s2 = convert_int(*(src_ptr + 2 * weights_stride_y)); \
src0.s3 = convert_int(*(src_ptr + 3 * weights_stride_y)); \
src0.s4 = convert_int(*(src_ptr + 4 * weights_stride_y)); \
src0.s5 = convert_int(*(src_ptr + 5 * weights_stride_y)); \
src0.s6 = convert_int(*(src_ptr + 6 * weights_stride_y)); \
src0.s7 = convert_int(*(src_ptr + 7 * weights_stride_y)); \
src0.s8 = convert_int(*(src_ptr + 8 * weights_stride_y)); \
src0.s9 = convert_int(*(src_ptr + 9 * weights_stride_y)); \
src0.sA = convert_int(*(src_ptr + 10 * weights_stride_y)); \
src0.sB = convert_int(*(src_ptr + 11 * weights_stride_y)); \
src0.sC = convert_int(*(src_ptr + 12 * weights_stride_y)); \
src0.sD = convert_int(*(src_ptr + 13 * weights_stride_y)); \
src0.sE = convert_int(*(src_ptr + 14 * weights_stride_y)); \
src0.sF = convert_int(*(src_ptr + 15 * weights_stride_y)); \
src1.s0 = convert_int(*(src_ptr + 16 * weights_stride_y)); \
src1.s1 = convert_int(*(src_ptr + 17 * weights_stride_y)); \
src1.s2 = convert_int(*(src_ptr + 18 * weights_stride_y)); \
src1.s3 = convert_int(*(src_ptr + 19 * weights_stride_y)); \
src1.s4 = convert_int(*(src_ptr + 20 * weights_stride_y)); \
src1.s5 = convert_int(*(src_ptr + 21 * weights_stride_y)); \
src1.s6 = convert_int(*(src_ptr + 22 * weights_stride_y)); \
src1.s7 = convert_int(*(src_ptr + 23 * weights_stride_y)); \
\
acc += src0.s02468ACE * (int8)weights_values0.s0; \
acc += (int8)(src0.s1357, src0.s9BDF) * (int8)weights_values0.s1; \
acc += (int8)(src0.s2468, src0.sACE, src1.s0) * (int8)weights_values0.s2; \
acc += (int8)(src0.s3579, src0.sBDF, src1.s1) * (int8)weights_values0.s3; \
acc += (int8)(src0.s468A, src0.sCE, src1.s02) * (int8)weights_values0.s4; \
acc += (int8)(src0.s579, src0.sBDF, src1.s13) * (int8)weights_values0.s5; \
acc += (int8)(src0.s68A, src0.sCE, src1.s024) * (int8)weights_values0.s6; \
acc += (int8)(src0.s79B, src0.sDF, src1.s135) * (int8)weights_values0.s7; \
acc += (int8)(src0.s8AC, src0.sE, src1.s0246) * (int8)weights_value1; \
})
#elif KERNEL_SIZE == 5
#if STRIDE_X == 1
#define CONVOLUTION1x5(acc, src_ptr, weights_ptr) CONVOLUTION1x5_STRIDE1(acc, src_ptr, weights_ptr)
#elif STRIDE_X == 2
#define CONVOLUTION1x5(acc, src_ptr, weights_ptr) CONVOLUTION1x5_STRIDE2(acc, src_ptr, weights_ptr)
#else /* STRIDE_X not equals 1 or 2 */
#error "STRIDE_X larger than 2 is not supported"
#endif /* STRIDE_X */
#define CONVOLUTION1x5_STRIDE1(acc, src_ptr, weights_ptr) \
({ \
int4 weights_values0 = 0; \
int weights_value1 = 0; \
weights_values0.s0 = convert_int(*(weights_ptr + 0 * weights_stride_y)); \
weights_values0.s1 = convert_int(*(weights_ptr + 1 * weights_stride_y)); \
weights_values0.s2 = convert_int(*(weights_ptr + 2 * weights_stride_y)); \
weights_values0.s3 = convert_int(*(weights_ptr + 3 * weights_stride_y)); \
weights_value1 = convert_int(*(weights_ptr + 4 * weights_stride_y)); \
\
int8 src0 = 0; \
int4 src1 = 0; \
src0.s0 = convert_int(*(src_ptr + 0 * weights_stride_y)); \
src0.s1 = convert_int(*(src_ptr + 1 * weights_stride_y)); \
src0.s2 = convert_int(*(src_ptr + 2 * weights_stride_y)); \
src0.s3 = convert_int(*(src_ptr + 3 * weights_stride_y)); \
src0.s4 = convert_int(*(src_ptr + 4 * weights_stride_y)); \
src0.s5 = convert_int(*(src_ptr + 5 * weights_stride_y)); \
src0.s6 = convert_int(*(src_ptr + 6 * weights_stride_y)); \
src0.s7 = convert_int(*(src_ptr + 7 * weights_stride_y)); \
src1.s0 = convert_int(*(src_ptr + 8 * weights_stride_y)); \
src1.s1 = convert_int(*(src_ptr + 9 * weights_stride_y)); \
src1.s2 = convert_int(*(src_ptr + 10 * weights_stride_y)); \
src1.s3 = convert_int(*(src_ptr + 11 * weights_stride_y)); \
\
acc += (src0 + input_offset) * ((int8)weights_values0.s0 + weight_offset); \
acc += ((int8)(src0.s1234, src0.s567, src1.s0) + input_offset) * ((int8)weights_values0.s1 + weight_offset); \
acc += ((int8)(src0.s234, src0.s567, src1.s01) + input_offset) * ((int8)weights_values0.s2 + weight_offset); \
acc += ((int8)(src0.s345, src0.s67, src1.s012) + input_offset) * ((int8)weights_values0.s3 + weight_offset); \
acc += ((int8)(src0.s45, src0.s67, src1.s0123) + input_offset) * ((int8)weights_value1 + weight_offset); \
})
#define CONVOLUTION1x5_STRIDE2(acc, src_ptr, weights_ptr) \
({ \
int4 weights_values0 = 0; \
int weights_value1 = 0; \
weights_values0.s0 = convert_int(*(weights_ptr + 0 * weights_stride_y)); \
weights_values0.s1 = convert_int(*(weights_ptr + 1 * weights_stride_y)); \
weights_values0.s2 = convert_int(*(weights_ptr + 2 * weights_stride_y)); \
weights_values0.s3 = convert_int(*(weights_ptr + 3 * weights_stride_y)); \
weights_value1 = convert_int(*(weights_ptr + 4 * weights_stride_y)); \
\
int16 src0 = 0; \
int4 src1 = 0; \
src0.s0 = convert_int(*(src_ptr + 0 * weights_stride_y)); \
src0.s1 = convert_int(*(src_ptr + 1 * weights_stride_y)); \
src0.s2 = convert_int(*(src_ptr + 2 * weights_stride_y)); \
src0.s3 = convert_int(*(src_ptr + 3 * weights_stride_y)); \
src0.s4 = convert_int(*(src_ptr + 4 * weights_stride_y)); \
src0.s5 = convert_int(*(src_ptr + 5 * weights_stride_y)); \
src0.s6 = convert_int(*(src_ptr + 6 * weights_stride_y)); \
src0.s7 = convert_int(*(src_ptr + 7 * weights_stride_y)); \
src0.s8 = convert_int(*(src_ptr + 8 * weights_stride_y)); \
src0.s9 = convert_int(*(src_ptr + 9 * weights_stride_y)); \
src0.sa = convert_int(*(src_ptr + 10 * weights_stride_y)); \
src0.sb = convert_int(*(src_ptr + 11 * weights_stride_y)); \
src0.sc = convert_int(*(src_ptr + 12 * weights_stride_y)); \
src0.sd = convert_int(*(src_ptr + 13 * weights_stride_y)); \
src0.se = convert_int(*(src_ptr + 14 * weights_stride_y)); \
src0.sf = convert_int(*(src_ptr + 15 * weights_stride_y)); \
src1.s0 = convert_int(*(src_ptr + 16 * weights_stride_y)); \
src1.s1 = convert_int(*(src_ptr + 17 * weights_stride_y)); \
src1.s2 = convert_int(*(src_ptr + 18 * weights_stride_y)); \
src1.s3 = convert_int(*(src_ptr + 19 * weights_stride_y)); \
\
acc += (src0.even + input_offset) * ((int8)weights_values0.s0 + weight_offset); \
acc += ((int8)(src0.s1357, src0.s9BDF) + input_offset) * ((int8)weights_values0.s1 + weight_offset); \
acc += ((int8)(src0.s2468, src0.sACE, src1.s0) + input_offset) * ((int8)weights_values0.s2 + weight_offset); \
acc += ((int8)(src0.s3579, src0.sBDF, src1.s1) + input_offset) * ((int8)weights_values0.s3 + weight_offset); \
acc += ((int8)(src0.s468a, src0.sCE, src1.s02) + input_offset) * ((int8)weights_value1 + weight_offset); \
})
#elif KERNEL_SIZE == 3
#if STRIDE_X == 1
#define CONVOLUTION1x3(acc, src_ptr, weights_ptr) CONVOLUTION1x3_STRIDE1(acc, src_ptr, weights_ptr)
#elif STRIDE_X == 2
#define CONVOLUTION1x3(acc, src_ptr, weights_ptr) CONVOLUTION1x3_STRIDE2(acc, src_ptr, weights_ptr)
#else /* STRIDE_X not equals 1 or 2 */
#error "STRIDE_X larger than 2 is not supported"
#endif /* STRIDE_X */
#define CONVOLUTION1x3_STRIDE1(acc, src_ptr, weights_ptr) \
({ \
int3 weights_values0 = 0; \
weights_values0.s0 = convert_int(*(weights_ptr + 0 * weights_stride_y)); \
weights_values0.s1 = convert_int(*(weights_ptr + 1 * weights_stride_y)); \
weights_values0.s2 = convert_int(*(weights_ptr + 2 * weights_stride_y)); \
\
int8 src0 = 0; \
int2 src1 = 0; \
src0.s0 = convert_int(*(src_ptr + 0 * weights_stride_y)); \
src0.s1 = convert_int(*(src_ptr + 1 * weights_stride_y)); \
src0.s2 = convert_int(*(src_ptr + 2 * weights_stride_y)); \
src0.s3 = convert_int(*(src_ptr + 3 * weights_stride_y)); \
src0.s4 = convert_int(*(src_ptr + 4 * weights_stride_y)); \
src0.s5 = convert_int(*(src_ptr + 5 * weights_stride_y)); \
src0.s6 = convert_int(*(src_ptr + 6 * weights_stride_y)); \
src0.s7 = convert_int(*(src_ptr + 7 * weights_stride_y)); \
src1.s0 = convert_int(*(src_ptr + 8 * weights_stride_y)); \
src1.s1 = convert_int(*(src_ptr + 9 * weights_stride_y)); \
\
acc += (src0 + input_offset) * ((int8)weights_values0.s0 + weight_offset); \
acc += ((int8)(src0.s1234, src0.s567, src1.s0) + input_offset) * ((int8)weights_values0.s1 + weight_offset); \
acc += ((int8)(src0.s234, src0.s567, src1.s01) + input_offset) * ((int8)weights_values0.s2 + weight_offset); \
})
#define CONVOLUTION1x3_STRIDE2(acc, src_ptr, weights_ptr) \
({ \
int3 weights_values0 = 0; \
weights_values0.s0 = convert_int(*(weights_ptr + 0 * weights_stride_y)); \
weights_values0.s1 = convert_int(*(weights_ptr + 1 * weights_stride_y)); \
weights_values0.s2 = convert_int(*(weights_ptr + 2 * weights_stride_y)); \
\
int16 src0 = 0; \
int src1 = 0; \
src0.s0 = convert_int(*(src_ptr + 0 * src_stride_y)); \
src0.s1 = convert_int(*(src_ptr + 1 * src_stride_y)); \
src0.s2 = convert_int(*(src_ptr + 2 * src_stride_y)); \
src0.s3 = convert_int(*(src_ptr + 3 * src_stride_y)); \
src0.s4 = convert_int(*(src_ptr + 4 * src_stride_y)); \
src0.s5 = convert_int(*(src_ptr + 5 * src_stride_y)); \
src0.s6 = convert_int(*(src_ptr + 6 * src_stride_y)); \
src0.s7 = convert_int(*(src_ptr + 7 * src_stride_y)); \
src0.s8 = convert_int(*(src_ptr + 8 * src_stride_y)); \
src0.s9 = convert_int(*(src_ptr + 9 * src_stride_y)); \
src0.sa = convert_int(*(src_ptr + 10 * src_stride_y)); \
src0.sb = convert_int(*(src_ptr + 11 * src_stride_y)); \
src0.sc = convert_int(*(src_ptr + 12 * src_stride_y)); \
src0.sd = convert_int(*(src_ptr + 13 * src_stride_y)); \
src0.se = convert_int(*(src_ptr + 14 * src_stride_y)); \
src0.sf = convert_int(*(src_ptr + 15 * src_stride_y)); \
src1 = convert_int(*(src_ptr + 16 * src_stride_y)); \
acc += (src0.even + input_offset) * ((int8)weights_values0.s0 + weight_offset); \
acc += ((int8)(src0.s1357, src0.s9BDF) + input_offset) * ((int8)weights_values0.s1 + weight_offset); \
acc += ((int8)(src0.s2468, src0.sACE, src1) + input_offset) * ((int8)weights_values0.s2 + weight_offset); \
})
#elif KERNEL_SIZE == 1
#if STRIDE_X == 3
#define INPUT_VALUE extract_input_stride3
#elif STRIDE_X == 2
#define INPUT_VALUE extract_input_stride2
#elif STRIDE_X == 1
#define INPUT_VALUE extract_input_stride1
#else /* STRIDE_X not equals 1, 2 or 3 */
#error "Only support strides 1, 2 and 3"
#endif /* STRIDE_X */
#endif // KERNEL_SIZE == 1
/** Extracts a 1D horizontal vector from the input tensor with stride as 1.
*
* @param[in] input_value Pointer to the first value.
*
* @return extracted input values.
*/
inline VEC_DATA_TYPE(DATA_TYPE, 8) extract_input_stride1(__global const DATA_TYPE *input_value, const uchar stride_y)
{
VEC_DATA_TYPE(DATA_TYPE, 8)
vals;
vals.s0 = *(input_value + 0 * stride_y);
vals.s1 = *(input_value + 1 * stride_y);
vals.s2 = *(input_value + 2 * stride_y);
vals.s3 = *(input_value + 3 * stride_y);
vals.s4 = *(input_value + 4 * stride_y);
vals.s5 = *(input_value + 5 * stride_y);
vals.s6 = *(input_value + 6 * stride_y);
vals.s7 = *(input_value + 7 * stride_y);
return vals;
}
/** Extracts a 1D horizontal vector from the input tensor with stride as 2.
*
* @param[in] input_value Pointer to the first value.
*
* @return extracted input values.
*/
inline VEC_DATA_TYPE(DATA_TYPE, 8) extract_input_stride2(__global const DATA_TYPE *input_value, const uchar stride_y)
{
VEC_DATA_TYPE(DATA_TYPE, 8)
vals;
vals.s0 = *(input_value + 0 * stride_y);
vals.s1 = *(input_value + 2 * stride_y);
vals.s2 = *(input_value + 4 * stride_y);
vals.s3 = *(input_value + 6 * stride_y);
vals.s4 = *(input_value + 8 * stride_y);
vals.s5 = *(input_value + 10 * stride_y);
vals.s6 = *(input_value + 12 * stride_y);
vals.s7 = *(input_value + 14 * stride_y);
return vals;
}
/** Extracts a 1D horizontal vector from the input tensor with stride as 3 and 8-bit data size.
*
* @param[in] input_value Pointer to the first value.
*
* @return extracted input values.
*/
inline VEC_DATA_TYPE(DATA_TYPE, 8) extract_input_stride3(__global const DATA_TYPE *input_value, const uchar stride_y)
{
VEC_DATA_TYPE(DATA_TYPE, 8)
vals;
vals.s0 = *(input_value + 0 * stride_y);
vals.s1 = *(input_value + 3 * stride_y);
vals.s2 = *(input_value + 6 * stride_y);
vals.s3 = *(input_value + 9 * stride_y);
vals.s4 = *(input_value + 12 * stride_y);
vals.s5 = *(input_value + 15 * stride_y);
vals.s6 = *(input_value + 18 * stride_y);
vals.s7 = *(input_value + 21 * stride_y);
return vals;
}
/** This kernel performs a direct convolution to convolve the low three dimensions.
*
* @note The convolution stride x must be passed at compile time using -DSTRIDE_X e.g. -DSTRIDE_X=1
* @note The third dimensions of the weights tensors must be passed at compile time using -DWEIGHTS_DEPTH
* @note If biases are used then -DHAS_BIAS has to be passed at compile time
* @note The output quantization multiplier must be passed at compile time using -DOUTPUT_MULTIPLIER e.g. -DOUTPUT_MULTIPLIER=1234
* @note The output quantization shift must be passed at compile time using -DOUTPUT_SHIFT e.g. -DOUTPUT_SHIFT=4
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
* @param[in] biases_ptr Pointer to the biases tensor. Supported data types: S32
* @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
* @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
* @param[in] weights_stride_w Stride of the weights tensor in the 4th dimension
* @param[in] input_offset Input offset quantization parameter
* @param[in] weight_offset Weights offset quantization parameter
* @param[in] output_offset Output offset quantization parameter
*/
__kernel void direct_convolution_quantized(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(weights),
#ifdef HAS_BIAS
VECTOR_DECLARATION(biases),
#endif /* defined(HAS_BIAS) */
unsigned int weights_stride_w,
int input_offset,
int weight_offset,
int output_offset)
{
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
int8 values0 = 0;
const int id0 = get_global_id(0);
const int y_coord = (get_global_id(2) * STRIDE_Y) - PAD_TOP;
__global DATA_TYPE *weights_addr = (__global DATA_TYPE *)tensor3D_offset(&weights, 0, 0, 0);
__global DATA_TYPE *src_addr = (__global DATA_TYPE *)offset(&src, 0, 0) - src_stride_x * id0 + y_coord * (int)src_stride_z;
weights_addr += id0 * weights_stride_w;
for(volatile int d = 0; d < WEIGHTS_DEPTH; ++d)
{
#if KERNEL_SIZE == 9
if(y_coord < 0)
{
const int start_z = -y_coord;
for(int i = start_z; i < 9; ++i)
{
CONVOLUTION1x9(values0, (src_addr + i * (int)src_stride_z), (weights_addr + i * (int)weights_stride_z));
}
}
else if(y_coord > (SRC_HEIGHT - 9))
{
// Avoid loading rows beyond the input height
const int end_z = SRC_HEIGHT - y_coord;
for(int i = 0; i < end_z; ++i)
{
CONVOLUTION1x9(values0, (src_addr + i * (int)src_stride_z), (weights_addr + i * (int)weights_stride_z));
}
}
else
{
CONVOLUTION1x9(values0, src_addr, weights_addr);
CONVOLUTION1x9(values0, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
CONVOLUTION1x9(values0, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
CONVOLUTION1x9(values0, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
CONVOLUTION1x9(values0, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
CONVOLUTION1x9(values0, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
CONVOLUTION1x9(values0, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
CONVOLUTION1x9(values0, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
CONVOLUTION1x9(values0, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z));
}
#elif KERNEL_SIZE == 5
#if(PAD_TOP == 1) || (PAD_BOTTM == 1)
if(y_coord < 0) // special case Z = -1 doesn't exists
{
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 1 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 2 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 3 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 3 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 4 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 4 * weights_stride_z));
}
else if(get_global_id(2) == (DST_HEIGHT - 1))
{
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 0 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 1 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 2 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 3 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 3 * weights_stride_z));
}
else
{
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 0 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 1 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 2 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 3 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 3 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 4 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 4 * weights_stride_z));
}
#elif(PAD_TOP == 2) || (PAD_BOTTM == 2)
if(y_coord < -1)
{
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 2 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 3 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 3 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 4 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 4 * weights_stride_z));
}
else if(y_coord == -1)
{
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 1 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 2 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 3 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 3 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 4 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 4 * weights_stride_z));
}
else if(y_coord == (SRC_HEIGHT - 3))
{
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 0 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 1 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 2 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_z));
}
else if(y_coord >= (SRC_HEIGHT - 4))
{
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 0 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 1 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 2 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 3 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 3 * weights_stride_z));
}
else
{
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 0 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 1 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 2 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 3 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 3 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 4 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 4 * weights_stride_z));
}
#else /* PAD_TOP == 2 || || PAD_BOTTM == 2 */
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 0 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 1 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 2 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 3 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 3 * weights_stride_z));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 4 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 4 * weights_stride_z));
#endif /* PAD_TOP == 1 || || PAD_BOTTM == 1 */
#elif KERNEL_SIZE == 3
#if(PAD_TOP > 0) || (PAD_BOTTOM > 0)
if(y_coord < 0) // special case Z = -1 doesn't exists
{
//skip first row and load the two next ones
CONVOLUTION1x3(values0, (__global DATA_TYPE *)(src_addr + 1 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_z));
CONVOLUTION1x3(values0, (__global DATA_TYPE *)(src_addr + 2 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_z));
}
else if(y_coord == (SRC_HEIGHT - PAD_BOTTOM - 1))
{
// special case when computing the last row of the output we must read the last three rows from the input buffer (including padding) but the
// Z axis has no padding at all.
CONVOLUTION1x3(values0, (__global DATA_TYPE *)(src_addr + 0 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_z));
CONVOLUTION1x3(values0, (__global DATA_TYPE *)(src_addr + 1 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_z));
}
else
{
CONVOLUTION1x3(values0, (__global DATA_TYPE *)(src_addr + 0 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_z));
CONVOLUTION1x3(values0, (__global DATA_TYPE *)(src_addr + 1 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_z));
CONVOLUTION1x3(values0, (__global DATA_TYPE *)(src_addr + 2 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_z));
}
#else // PAD_TOP > 0 || PAD_BOTTOM > 0
CONVOLUTION1x3(values0, (__global DATA_TYPE *)(src_addr + 0 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_z));
CONVOLUTION1x3(values0, (__global DATA_TYPE *)(src_addr + 1 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_z));
CONVOLUTION1x3(values0, (__global DATA_TYPE *)(src_addr + 2 * src_stride_z), (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_z));
#endif // PAD_TOP > 0 || PAD_BOTTOM > 0
#elif KERNEL_SIZE == 1
int weight = convert_int(*(__global DATA_TYPE *)weights_addr);
int8 input_value = convert_int8(INPUT_VALUE((__global DATA_TYPE *)src_addr, src_stride_y));
values0 += (input_value + input_offset) * ((int8)weight + weight_offset);
#endif /* (KERNEL_SIZE == 1) || (KERNEL_SIZE == 3) || (KERNEL_SIZE == 5) */
src_addr += src_stride_x;
weights_addr += weights_stride_x;
}
#ifdef HAS_BIAS
Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
__global int *bias_addr = ((__global int *)(vector_offset(&biases, id0)));
values0 += (int8)(*bias_addr);
#endif /* defined(HAS_BIAS) */
#if OUTPUT_SHIFT < 0
values0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
#else // OUTPUT_SHIFT < 0
values0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
#endif // OUTPUT_SHIFT < 0
values0 = values0 + output_offset;
VEC_DATA_TYPE(DATA_TYPE, 8)
values = CONVERT_SAT(values0, DATA_TYPE);
*(dst.ptr + 0 * dst_stride_y) = values.s0;
*(dst.ptr + 1 * dst_stride_y) = values.s1;
*(dst.ptr + 2 * dst_stride_y) = values.s2;
*(dst.ptr + 3 * dst_stride_y) = values.s3;
*(dst.ptr + 4 * dst_stride_y) = values.s4;
*(dst.ptr + 5 * dst_stride_y) = values.s5;
*(dst.ptr + 6 * dst_stride_y) = values.s6;
*(dst.ptr + 7 * dst_stride_y) = values.s7;
}
#else // defined(DATA_LAYOUT_NHWC)
#if KERNEL_SIZE == 9
#if STRIDE_X == 1
#define CONVOLUTION1x9(acc, src_row_ptr, weights_row_ptr) CONVOLUTION1x9_STRIDE1(acc, src_row_ptr, weights_row_ptr)
#elif STRIDE_X == 2
#define CONVOLUTION1x9(acc, src_row_ptr, weights_row_ptr) CONVOLUTION1x9_STRIDE2(acc, src_row_ptr, weights_row_ptr)
#else /* STRIDE_X not equals 1 or 2 */
#error "STRIDE_X larger than 2 is not supported"
#endif /* STRIDE_X */
#define CONVOLUTION1x9_STRIDE1(acc, src_row_ptr, weights_row_ptr) \
({ \
int8 weights_values0 = convert_int8(vload8(0, weights_row_ptr)); \
int weights_value1 = convert_int(*(weights_row_ptr + 8)); \
int16 src0 = convert_int16(vload16(0, src_row_ptr)); \
acc += (src0.lo + input_offset) * ((int8)weights_values0.s0 + weight_offset); \
acc += ((int8)(src0.s1234, src0.s5678) + input_offset) * ((int8)weights_values0.s1 + weight_offset); \
acc += ((int8)(src0.s2345, src0.s6789) + input_offset) * ((int8)weights_values0.s2 + weight_offset); \
acc += ((int8)(src0.s3456, src0.s789A) + input_offset) * ((int8)weights_values0.s3 + weight_offset); \
acc += ((int8)(src0.s4567, src0.s89AB) + input_offset) * ((int8)weights_values0.s4 + weight_offset); \
acc += ((int8)(src0.s5678, src0.s9ABC) + input_offset) * ((int8)weights_values0.s5 + weight_offset); \
acc += ((int8)(src0.s6789, src0.sABCD) + input_offset) * ((int8)weights_values0.s6 + weight_offset); \
acc += ((int8)(src0.s789A, src0.sBCDE) + input_offset) * ((int8)weights_values0.s7 + weight_offset); \
acc += ((int8)(src0.s89AB, src0.sCDEF) + input_offset) * ((int8)weights_value1 + weight_offset); \
})
#define CONVOLUTION1x9_STRIDE2(acc, src_row_ptr, weights_row_ptr) \
({ \
int8 weights_values0 = convert_int8(vload8(0, weights_row_ptr)); \
int weights_value1 = convert_int(*(weights_row_ptr + 8)); \
int16 src0 = convert_int16(vload16(0, src_row_ptr)); \
int8 src1 = convert_int8(vload8(0, src_row_ptr + 16)); \
acc += (src0.even + input_offset) * ((int8)weights_values0.s0 + weight_offset); \
acc += ((int8)(src0.s1357, src0.s9BDF) + input_offset) * ((int8)weights_values0.s1 + weight_offset); \
acc += ((int8)(src0.s2468, src0.sACE, src1.s0) + input_offset) * ((int8)weights_values0.s2 + weight_offset); \
acc += ((int8)(src0.s3579, src0.sBDF, src1.s1) + input_offset) * ((int8)weights_values0.s3 + weight_offset); \
acc += ((int8)(src0.s468A, src0.sCE, src1.s02) + input_offset) * ((int8)weights_values0.s4 + weight_offset); \
acc += ((int8)(src0.s579B, src0.sDF, src1.s13) + input_offset) * ((int8)weights_values0.s5 + weight_offset); \
acc += ((int8)(src0.s68AC, src0.sE, src1.s024) + input_offset) * ((int8)weights_values0.s6 + weight_offset); \
acc += ((int8)(src0.s79BD, src0.sF, src1.s135) + input_offset) * ((int8)weights_values0.s7 + weight_offset); \
acc += ((int8)(src0.s8ACE, src1.s0246) + input_offset) * ((int8)weights_value1 + weight_offset); \
})
#elif KERNEL_SIZE == 5
#if STRIDE_X == 1
#define CONVOLUTION1x5(acc, src_row_ptr, weights_row_ptr) CONVOLUTION1x5_STRIDE1(acc, src_row_ptr, weights_row_ptr)
#elif STRIDE_X == 2
#define CONVOLUTION1x5(acc, src_row_ptr, weights_row_ptr) CONVOLUTION1x5_STRIDE2(acc, src_row_ptr, weights_row_ptr)
#else /* STRIDE_X not equals 1 or 2 */
#error "STRIDE_X larger than 2 is not supported"
#endif /* STRIDE_X */
#define CONVOLUTION1x5_STRIDE1(acc, src_row_ptr, weights_row_ptr) \
({ \
int4 weights_values0 = convert_int4(vload4(0, weights_row_ptr)); \
int weights_value1 = convert_int(*(weights_row_ptr + 4)); \
int8 src0 = convert_int8(vload8(0, src_row_ptr)); \
int4 src1 = convert_int4(vload4(0, src_row_ptr + 8)); \
acc += (src0 + input_offset) * ((int8)weights_values0.s0 + weight_offset); \
acc += ((int8)(src0.s1234, src0.s567, src1.s0) + input_offset) * ((int8)weights_values0.s1 + weight_offset); \
acc += ((int8)(src0.s234, src0.s567, src1.s01) + input_offset) * ((int8)weights_values0.s2 + weight_offset); \
acc += ((int8)(src0.s345, src0.s67, src1.s012) + input_offset) * ((int8)weights_values0.s3 + weight_offset); \
acc += ((int8)(src0.s45, src0.s67, src1.s0123) + input_offset) * ((int8)weights_value1 + weight_offset); \
})
#define CONVOLUTION1x5_STRIDE2(acc, src_row_ptr, weights_row_ptr) \
({ \
int4 weights_values0 = convert_int4(vload4(0, weights_row_ptr)); \
int weights_value1 = convert_int(*(weights_row_ptr + 4)); \
int16 src0 = convert_int16(vload16(0, src_row_ptr)); \
int4 src1 = convert_int4(vload4(0, src_row_ptr + 16)); \
acc += (src0.even + input_offset) * ((int8)weights_values0.s0 + weight_offset); \
acc += ((int8)(src0.s1357, src0.s9BDF) + input_offset) * ((int8)weights_values0.s1 + weight_offset); \
acc += ((int8)(src0.s2468, src0.sACE, src1.s0) + input_offset) * ((int8)weights_values0.s2 + weight_offset); \
acc += ((int8)(src0.s3579, src0.sBDF, src1.s1) + input_offset) * ((int8)weights_values0.s3 + weight_offset); \
acc += ((int8)(src0.s468a, src0.sCE, src1.s02) + input_offset) * ((int8)weights_value1 + weight_offset); \
})
#elif KERNEL_SIZE == 3
#if STRIDE_X == 1
#define CONVOLUTION1x3(acc, src_row_ptr, weights_row_ptr) CONVOLUTION1x3_STRIDE1(acc, src_row_ptr, weights_row_ptr)
#elif STRIDE_X == 2
#define CONVOLUTION1x3(acc, src_row_ptr, weights_row_ptr) CONVOLUTION1x3_STRIDE2(acc, src_row_ptr, weights_row_ptr)
#else /* STRIDE_X not equals 1 or 2 */
#error "STRIDE_X larger than 2 is not supported"
#endif /* STRIDE_X */
#define CONVOLUTION1x3_STRIDE1(acc, src_row_ptr, weights_row_ptr) \
({ \
int3 weights_values0 = convert_int3(vload3(0, weights_row_ptr)); \
int8 src0 = convert_int8(vload8(0, src_row_ptr)); \
int2 src1 = convert_int2(vload2(0, src_row_ptr + 8)); \
acc += (src0 + input_offset) * ((int8)weights_values0.s0 + weight_offset); \
acc += ((int8)(src0.s1234, src0.s567, src1.s0) + input_offset) * ((int8)weights_values0.s1 + weight_offset); \
acc += ((int8)(src0.s234, src0.s567, src1.s01) + input_offset) * ((int8)weights_values0.s2 + weight_offset); \
})
#define CONVOLUTION1x3_STRIDE2(acc, src_row_ptr, weights_row_ptr) \
({ \
int3 weights_values0 = convert_int3(vload3(0, weights_row_ptr)); \
int16 src0 = convert_int16(vload16(0, src_row_ptr)); \
int src1 = convert_int(*(src_row_ptr + 16)); \
acc += (src0.even + input_offset) * ((int8)weights_values0.s0 + weight_offset); \
acc += ((int8)(src0.s1357, src0.s9BDF) + input_offset) * ((int8)weights_values0.s1 + weight_offset); \
acc += ((int8)(src0.s2468, src0.sACE, src1) + input_offset) * ((int8)weights_values0.s2 + weight_offset); \
})
#elif KERNEL_SIZE == 1
#if STRIDE_X == 3
#define INPUT_VALUE extract_input_stride3
#elif STRIDE_X == 2
#define INPUT_VALUE extract_input_stride2
#elif STRIDE_X == 1
#define INPUT_VALUE extract_input_stride1
#else /* STRIDE_X not equals 1, 2 or 3 */
#error "Only support strides 1, 2 and 3"
#endif /* STRIDE_X */
/** Extracts a 1D horizontal vector from the input tensor with stride as 1.
*
* @param[in] input_value Pointer to the first value.
*
* @return extracted input values.
*/
inline VEC_DATA_TYPE(DATA_TYPE, 8) extract_input_stride1(__global const DATA_TYPE *input_value)
{
return vload8(0, input_value);
}
/** Extracts a 1D horizontal vector from the input tensor with stride as 2.
*
* @param[in] input_value Pointer to the first value.
*
* @return extracted input values.
*/
inline VEC_DATA_TYPE(DATA_TYPE, 8) extract_input_stride2(__global const DATA_TYPE *input_value)
{
VEC_DATA_TYPE(DATA_TYPE, 16)
temp = vload16(0, input_value);
return temp.s02468ace;
}
/** Extracts a 1D horizontal vector from the input tensor with stride as 3 and 8-bit data size.
*
* @param[in] input_value Pointer to the first value.
*
* @return extracted input values.
*/
inline VEC_DATA_TYPE(DATA_TYPE, 8) extract_input_stride3(__global const DATA_TYPE *input_value)
{
VEC_DATA_TYPE(DATA_TYPE, 16)
temp1 = vload16(0, input_value);
VEC_DATA_TYPE(DATA_TYPE, 16)
temp2 = vload16(0, input_value + 12);
return (VEC_DATA_TYPE(DATA_TYPE, 8))(temp1.s0369, temp2.s0369);
}
#else /* KERNEL_SIZE not equals 1, 3 , 5, 9 */
#error "Only kernel sizes 1, 3, 5 and 9 are supported"
#endif /* KERNEL_SIZE */
/** This kernel performs a direct convolution to convolve the low three dimensions.
*
* @note The convolution stride x must be passed at compile time using -DSTRIDE_X e.g. -DSTRIDE_X=1
* @note The third dimensions of the weights tensors must be passed at compile time using -DWEIGHTS_DEPTH
* @note If biases are used then -DHAS_BIAS has to be passed at compile time
* @note The output quantization multiplier must be passed at compile time using -DOUTPUT_MULTIPLIER e.g. -DOUTPUT_MULTIPLIER=1234
* @note The output quantization shift must be passed at compile time using -DOUTPUT_SHIFT e.g. -DOUTPUT_SHIFT=4
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
* @param[in] biases_ptr Pointer to the biases tensor. Supported data types: S32
* @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
* @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
* @param[in] weights_stride_w Stride of the weights tensor in the 4th dimension
* @param[in] input_offset Input offset quantization parameter
* @param[in] weight_offset Weights offset quantization parameter
* @param[in] output_offset Output offset quantization parameter
*/
__kernel void direct_convolution_quantized(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(weights),
#ifdef HAS_BIAS
VECTOR_DECLARATION(biases),
#endif /* defined(HAS_BIAS) */
unsigned int weights_stride_w,
int input_offset,
int weight_offset,
int output_offset)
{
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
int8 values0 = 0;
__global DATA_TYPE *weights_addr = (__global DATA_TYPE *)tensor3D_offset(&weights, 0, 0, 0);
__global DATA_TYPE *src_addr = (__global DATA_TYPE *)offset(&src, 0, 0);
const int kernel_index = get_global_id(2);
weights_addr += kernel_index * weights_stride_w;
for(volatile int d = 0; d < WEIGHTS_DEPTH; ++d)
{
#if KERNEL_SIZE == 9
CONVOLUTION1x9(values0, (__global DATA_TYPE *)(src_addr + 0 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_y));
CONVOLUTION1x9(values0, (__global DATA_TYPE *)(src_addr + 1 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_y));
CONVOLUTION1x9(values0, (__global DATA_TYPE *)(src_addr + 2 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_y));
CONVOLUTION1x9(values0, (__global DATA_TYPE *)(src_addr + 3 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 3 * weights_stride_y));
CONVOLUTION1x9(values0, (__global DATA_TYPE *)(src_addr + 4 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 4 * weights_stride_y));
CONVOLUTION1x9(values0, (__global DATA_TYPE *)(src_addr + 5 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 5 * weights_stride_y));
CONVOLUTION1x9(values0, (__global DATA_TYPE *)(src_addr + 6 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 6 * weights_stride_y));
CONVOLUTION1x9(values0, (__global DATA_TYPE *)(src_addr + 7 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 7 * weights_stride_y));
CONVOLUTION1x9(values0, (__global DATA_TYPE *)(src_addr + 8 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 8 * weights_stride_y));
#elif KERNEL_SIZE == 5
CONVOLUTION1x5(values0, (__global DATA_TYPE *)src_addr, (__global DATA_TYPE *)weights_addr);
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 1 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_y));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 2 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_y));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 3 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 3 * weights_stride_y));
CONVOLUTION1x5(values0, (__global DATA_TYPE *)(src_addr + 4 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 4 * weights_stride_y));
#elif KERNEL_SIZE == 3
CONVOLUTION1x3(values0, (__global DATA_TYPE *)(src_addr + 0 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_y));
CONVOLUTION1x3(values0, (__global DATA_TYPE *)(src_addr + 1 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_y));
CONVOLUTION1x3(values0, (__global DATA_TYPE *)(src_addr + 2 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_y));
#elif KERNEL_SIZE == 1
int weight = convert_int(*(__global DATA_TYPE *)weights_addr);
int8 input_value = convert_int8(INPUT_VALUE((__global DATA_TYPE *)src_addr));
values0 += (input_value + input_offset) * ((int8)weight + weight_offset);
#endif /* (KERNEL_SIZE == 1) || (KERNEL_SIZE == 3) || (KERNEL_SIZE == 5) */
src_addr += src_stride_z;
weights_addr += weights_stride_z;
}
#ifdef HAS_BIAS
Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
__global int *bias_addr = ((__global int *)(vector_offset(&biases, kernel_index)));
values0 += (int8)(*bias_addr);
#endif /* defined(HAS_BIAS) */
#if OUTPUT_SHIFT < 0
values0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
#else // OUTPUT_SHIFT < 0
values0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
#endif // OUTPUT_SHIFT < 0
values0 = values0 + output_offset;
vstore8(CONVERT_SAT(values0, DATA_TYPE), 0, (__global DATA_TYPE *)dst.ptr);
}
#endif // defined(DATA_LAYOUT_NHWC)
#endif // defined(DATA_TYPE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH) && defined(OUTPUT_MULTIPLIER) && defined(OUTPUT_SHIFT)