blob: 77dbb47e4162ac2726d11c3d58c5e21c87a635da [file] [log] [blame]
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#define MAX_OP(x, y, type, size) max((x), (y))
#define ADD_OP(x, y, type, size) ((x) + (y))
#define SUB_OP(x, y, type, size) ((x) - (y))
#define MUL_OP(x, y, type, size) ((x) * (y))
#define DIV_OP(x, y, type, size) ((x) / (y))
#define EXP_OP(x, type, size) exp((x))
#ifdef USE_F16
#define MINVAL -HALF_MAX
#define SELECT_DATA_TYPE short
#else /* USE_F16 */
#define MINVAL -FLT_MAX
#define SELECT_DATA_TYPE int
#endif /* USE_F16 */
/* Number of workitems in dimension 0. */
#if !defined(GRID_SIZE)
#define GRID_SIZE 1
#endif /* !defined(GRID_SIZE) */
/* Vector size, i.e. number of vector elements. */
#if VECTOR_SIZE == 2
__constant VEC_DATA_TYPE(DATA_TYPE, 2) type_min_ = (VEC_DATA_TYPE(DATA_TYPE, 2))(MINVAL);
__constant uint2 idx__ = (uint2)(0, 1);
#elif VECTOR_SIZE == 4
__constant VEC_DATA_TYPE(DATA_TYPE, 4) type_min_ = (VEC_DATA_TYPE(DATA_TYPE, 4))(MINVAL);
__constant uint4 idx__ = (uint4)(0, 1, 2, 3);
#elif VECTOR_SIZE == 8
__constant VEC_DATA_TYPE(DATA_TYPE, 8) type_min_ = (VEC_DATA_TYPE(DATA_TYPE, 8))(MINVAL);
__constant uint8 idx__ = (uint8)(0, 1, 2, 3, 4, 5, 6, 7);
#else /* VECTOR_SIZE DEFAULT */
#define VECTOR_SIZE 16
#define LOG_VECTOR_SIZE 4
__constant VEC_DATA_TYPE(DATA_TYPE, 16) type_min_ = (VEC_DATA_TYPE(DATA_TYPE, 16))(MINVAL);
__constant uint16 idx__ = (uint16)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
#endif /* VECTOR_SIZE END */
// TODO (COMPMID-661): Remove if the non-fused kernels are removed
__constant VEC_DATA_TYPE(DATA_TYPE, 16) type_min = (VEC_DATA_TYPE(DATA_TYPE, 16))(MINVAL);
__constant uint16 idx16 = (uint16)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
__constant uint4 idx4 = (uint4)(0, 1, 2, 3);
/** Divides all the values of the input tensor by the sum calculated from softmax_layer_shift_exp_sum kernel.
*
* @note Datatype must be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short
*
* @param[in] src_ptr Pointer to the source tensor slice. Supported data types: F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] sum_ptr Pointer to the sum values tensor slice. Supported data types: same as @p src_ptr
* @param[in] sum_stride_x Stride of the sum values tensor in X dimension (in bytes)
* @param[in] sum_step_x sum_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] sum_stride_y Stride of the sum values tensor in Y dimension (in bytes)
* @param[in] sum_step_y sum_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] sum_stride_z Stride of the sum values tensor in Z dimension (in bytes)
* @param[in] sum_step_z sum_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] sum_offset_first_element_in_bytes The offset of the first element in the sum values tensor
* @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void softmax_layer_norm(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(sum),
TENSOR3D_DECLARATION(dst))
{
Image src = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
Image sum = CONVERT_TENSOR3D_TO_IMAGE_STRUCT_NO_STEP(sum);
// Load max value of 1D logits vector (row)
DATA_TYPE sum_val = *((__global DATA_TYPE *)offset(&sum, 0, get_global_id(1)));
VEC_DATA_TYPE(DATA_TYPE, 16)
data = vload16(0, (__global DATA_TYPE *)offset(&src, 0, 0));
#ifdef LOG_SOFTMAX
sum_val = log(sum_val);
vstore16(SUB_OP(data, sum_val, DATA_TYPE, 16), 0, (__global DATA_TYPE *)offset(&dst, 0, 0));
#else /* LOG_SOFTMAX */
vstore16(DIV_OP(data, sum_val, DATA_TYPE, 16), 0, (__global DATA_TYPE *)offset(&dst, 0, 0));
#endif /* LOG_SOFTMAX */
}
/** Identifies the maximum value across the 1st dimension and shifts the values of the input tensor by this maximum value,
* then gets the exponent of each element as sums all elements across each row.
*
* @note Datatype must be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short
* @note In case the input is not a multiple of VECTOR_SIZE (2,4,8,16) -DNON_MULTIPLE_OF_VECTOR_SIZE must be passed.
* @note Beta can be optionally passed at compile time using -DBETA (by default, it is 1.0).
*
* @param[in] src_ptr Pointer to the source tensor slice. Supported data types: F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] maxo_ptr Pointer to the max values tensor slice. Supported data types: same as @p src_ptr
* @param[in] maxo_stride_x Stride of the max values tensor in X dimension (in bytes)
* @param[in] maxo_step_x max_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] maxo_stride_y Stride of the max values tensor in Y dimension (in bytes)
* @param[in] maxo_step_y max_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] maxo_stride_z Stride of the max values tensor in Z dimension (in bytes)
* @param[in] maxo_step_z max_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] maxo_offset_first_element_in_bytes The offset of the first element in the max values tensor
* @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[out] sum_ptr Pointer to the sum values tensor slice. Supported data types: same as @p src_ptr
* @param[in] sum_stride_x Stride of the sum values tensor in X dimension (in bytes)
* @param[in] sum_step_x sum_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] sum_stride_y Stride of the sum values tensor in Y dimension (in bytes)
* @param[in] sum_step_y sum_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] sum_stride_z Stride of the sum values tensor in Z dimension (in bytes)
* @param[in] sum_step_z sum_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] sum_offset_first_element_in_bytes The offset of the first element in the sum values tensor
* @param[in] width Input image width
*/
__kernel void softmax_layer_max_shift_exp_sum_serial(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(maxo),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(sum),
uint width)
{
Image src = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
Image maxo = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(maxo);
Image sum = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(sum);
#ifdef BETA
// Initialize beta
VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
beta = (VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE))BETA;
#endif /* BETA */
// Initialize local maximum
VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
max_val_vec = (VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE))type_min_;
// Calculate max of row
const uint width_ = width >> LOG_VECTOR_SIZE;
for(uint i = 0; i < width_; i++)
{
VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
data_max = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)offset(&src, i << LOG_VECTOR_SIZE, 0));
max_val_vec = MAX_OP(data_max, max_val_vec, DATA_TYPE, VECTOR_SIZE);
}
#ifdef NON_MULTIPLE_OF_VECTOR_SIZE
VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
data_max = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)offset(&src, width_ << LOG_VECTOR_SIZE, 0));
VEC_DATA_TYPE(SELECT_DATA_TYPE, VECTOR_SIZE)
widx = CONVERT((EXPAND((CL_VEC_DATA_TYPE(uint, VECTOR_SIZE)))(width_ << LOG_VECTOR_SIZE) + idx__) < width, VEC_DATA_TYPE(SELECT_DATA_TYPE, VECTOR_SIZE));
max_val_vec = MAX_OP(max_val_vec, select(type_min_, data_max, widx), DATA_TYPE, VECTOR_SIZE);
#endif /* NON_MULTIPLE_OF_VECTOR_SIZE */
// Perform max reduction
#if VECTOR_SIZE == 16
max_val_vec.s01234567 = MAX_OP(max_val_vec.s01234567, max_val_vec.s89ABCDEF, DATA_TYPE, 8);
#endif /* VECTOR SIZE 16 END */
#if VECTOR_SIZE >= 8
max_val_vec.s0123 = MAX_OP(max_val_vec.s0123, max_val_vec.s4567, DATA_TYPE, 4);
#endif /* VECTOR SIZE 8 END */
#if VECTOR_SIZE >= 4
max_val_vec.s01 = MAX_OP(max_val_vec.s01, max_val_vec.s23, DATA_TYPE, 2);
#endif /* VECTOR SIZE 4 END */
max_val_vec.s0 = MAX_OP(max_val_vec.s0, max_val_vec.s1, DATA_TYPE, 1);
// Store result
*((__global DATA_TYPE *)maxo.ptr) = max_val_vec.s0;
/* Second section */
// Load max value of 1D logits vector (row)
DATA_TYPE max_val = *((__global DATA_TYPE *)offset(&maxo, 0, 0));
// Set sum vector
VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
sum1D = 0;
// Shift values, exp and sum
for(uint i = 0; i < width_; i++)
{
VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
data = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)offset(&src, i << LOG_VECTOR_SIZE, 0));
data = SUB_OP(data, max_val, DATA_TYPE, VECTOR_SIZE);
#ifdef BETA
data = MUL_OP(data, beta, DATA_TYPE, VECTOR_SIZE);
#endif /* BETA */
#ifdef LOG_SOFTMAX
VSTORE(VECTOR_SIZE)
(data, 0, (__global DATA_TYPE *)offset(&dst, i << LOG_VECTOR_SIZE, 0));
data = EXP_OP(data, DATA_TYPE, VECTOR_SIZE);
#else /* LOG_SOFTMAX */
data = EXP_OP(data, DATA_TYPE, VECTOR_SIZE);
VSTORE(VECTOR_SIZE)
(data, 0, (__global DATA_TYPE *)offset(&dst, i << LOG_VECTOR_SIZE, 0));
#endif /* LOG_SOFTMAX */
sum1D = ADD_OP(sum1D, data, DATA_TYPE, VECTOR_SIZE);
}
#ifdef NON_MULTIPLE_OF_VECTOR_SIZE
VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
data = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)offset(&src, width_ << LOG_VECTOR_SIZE, 0));
data = SUB_OP(data, max_val, DATA_TYPE, VECTOR_SIZE);
#ifdef BETA
data = MUL_OP(data, beta, DATA_TYPE, VECTOR_SIZE);
#endif /* BETA */
#ifdef LOG_SOFTMAX
VSTORE(VECTOR_SIZE)
(data, 0, (__global DATA_TYPE *)offset(&dst, width_ << LOG_VECTOR_SIZE, 0));
data = EXP_OP(data, DATA_TYPE, VECTOR_SIZE);
widx = CONVERT((EXPAND((CL_VEC_DATA_TYPE(uint, VECTOR_SIZE)))(width_ << LOG_VECTOR_SIZE) + idx__) < width, VEC_DATA_TYPE(SELECT_DATA_TYPE, VECTOR_SIZE));
data = select(0, data, widx);
#else /* LOG_SOFTMAX */
data = EXP_OP(data, DATA_TYPE, VECTOR_SIZE);
widx = CONVERT((EXPAND((CL_VEC_DATA_TYPE(uint, VECTOR_SIZE)))(width_ << LOG_VECTOR_SIZE) + idx__) < width, VEC_DATA_TYPE(SELECT_DATA_TYPE, VECTOR_SIZE));
data = select(0, data, widx);
VSTORE(VECTOR_SIZE)
(data, 0, (__global DATA_TYPE *)offset(&dst, width_ << LOG_VECTOR_SIZE, 0));
#endif /* LOG_SOFTMAX */
sum1D = ADD_OP(sum1D, data, DATA_TYPE, VECTOR_SIZE);
#endif /* NON_MULTIPLE_OF_VECTOR_SIZE */
// Perform sum reduction
#if VECTOR_SIZE == 16
sum1D.s01234567 = ADD_OP(sum1D.s01234567, sum1D.s89ABCDEF, DATA_TYPE, 8);
#endif /* VECTOR SIZE 16 END */
#if VECTOR_SIZE >= 8
sum1D.s0123 = ADD_OP(sum1D.s0123, sum1D.s4567, DATA_TYPE, 4);
#endif /* VECTOR SIZE 8 END */
#if VECTOR_SIZE >= 4
sum1D.s01 = ADD_OP(sum1D.s01, sum1D.s23, DATA_TYPE, 2);
#endif /* VECTOR SIZE 4 END */
sum1D.s0 = ADD_OP(sum1D.s0, sum1D.s1, DATA_TYPE, 1);
// Calculate and store result
*((__global DATA_TYPE *)sum.ptr) = sum1D.s0;
}
/** Identifies the maximum value across the 1st dimension and shifts the values of the input tensor by this maximum value,
* then gets the exponent of each element as sums all elements across each row.
*
* @note Datatype must be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short
* @note In case the input is not a multiple of VECTOR_SIZE (2,4,8,16) -DNON_MULTIPLE_OF_VECTOR_SIZE must be passed.
* @note Beta can be optionally passed at compile time using -DBETA (by default, it is 1.0).
*
* @param[in] src_ptr Pointer to the source tensor slice. Supported data types: F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] maxo_ptr Pointer to the max values tensor slice. Supported data types: same as @p src_ptr
* @param[in] maxo_stride_x Stride of the max values tensor in X dimension (in bytes)
* @param[in] maxo_step_x max_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] maxo_stride_y Stride of the max values tensor in Y dimension (in bytes)
* @param[in] maxo_step_y max_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] maxo_stride_z Stride of the max values tensor in Z dimension (in bytes)
* @param[in] maxo_step_z max_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] maxo_offset_first_element_in_bytes The offset of the first element in the max values tensor
* @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[out] sum_ptr Pointer to the sum values tensor slice. Supported data types: same as @p src_ptr
* @param[in] sum_stride_x Stride of the sum values tensor in X dimension (in bytes)
* @param[in] sum_step_x sum_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] sum_stride_y Stride of the sum values tensor in Y dimension (in bytes)
* @param[in] sum_step_y sum_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] sum_stride_z Stride of the sum values tensor in Z dimension (in bytes)
* @param[in] sum_step_z sum_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] sum_offset_first_element_in_bytes The offset of the first element in the sum values tensor
* @param[in] width Input image width
*/
__kernel void softmax_layer_max_shift_exp_sum_parallel(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(maxo),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(sum),
uint width)
{
Image src = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
Image maxo = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(maxo);
Image sum = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(sum);
const uint lid = get_local_id(0);
#ifdef BETA
// Initialize beta
VEC_DATA_TYPE(DATA_TYPE, 4)
beta = (VEC_DATA_TYPE(DATA_TYPE, 4))BETA;
#endif /* BETA */
// Define one temporary vector per work-item.
__local VEC_DATA_TYPE(DATA_TYPE, 4) tmp_local[GRID_SIZE];
__local DATA_TYPE max_local;
__constant VEC_DATA_TYPE(DATA_TYPE, 4) type_min4 = (VEC_DATA_TYPE(DATA_TYPE, 4))(MINVAL);
VEC_DATA_TYPE(DATA_TYPE, 4)
max_val_vec = (VEC_DATA_TYPE(DATA_TYPE, 4))type_min4;
// Number of elements per work-item.
const uint row = width / GRID_SIZE;
// Number of iterations per work-item.
const uint width_ = row >> 2;
// Calculate max of row
uint i = 0;
for(; i < width_; i++)
{
VEC_DATA_TYPE(DATA_TYPE, 4)
data_max = VLOAD(4)(0, (__global DATA_TYPE *)offset(&src, i * GRID_SIZE * 4, 0));
max_val_vec = MAX_OP(data_max, max_val_vec, DATA_TYPE, 4);
}
#ifdef NON_MULTIPLE_OF_GRID_SIZE
// How many work-items needed to complete the computation.
//TODO: Optimize this calculation (avoid %).
int boundary_workitems = (width % (GRID_SIZE * 4)) / 4;
if(lid < boundary_workitems)
{
VEC_DATA_TYPE(DATA_TYPE, 4)
data_max = VLOAD(4)(0, (__global DATA_TYPE *)offset(&src, i * GRID_SIZE * 4, 0));
max_val_vec = MAX_OP(data_max, max_val_vec, DATA_TYPE, 4);
}
#ifdef NON_MULTIPLE_OF_VECTOR_SIZE
if(boundary_workitems == 0)
{
boundary_workitems = GRID_SIZE;
i--;
}
if(lid == (boundary_workitems - 1))
{
// Handle non multiple of 4
VEC_DATA_TYPE(DATA_TYPE, 4)
data_max = VLOAD(4)(0, (__global DATA_TYPE *)offset(&src, (GRID_SIZE * i * 4) + 4, 0));
VEC_DATA_TYPE(SELECT_DATA_TYPE, 4)
widx = CONVERT(((uint4)(GRID_SIZE * i * 4) + boundary_workitems * 4 + idx4) < width, VEC_DATA_TYPE(SELECT_DATA_TYPE, 4));
max_val_vec = MAX_OP(max_val_vec, select(type_min_, data_max, widx), DATA_TYPE, 4);
}
#endif /* NON_MULTIPLE_OF_VECTOR_SIZE */
#endif /* NON_MULTIPLE_OF_GRID_SIZE */
tmp_local[lid] = max_val_vec;
barrier(CLK_LOCAL_MEM_FENCE);
if(GRID_SIZE >= 256)
{
if(lid < 128)
{
tmp_local[lid] = MAX_OP(tmp_local[lid + 128], tmp_local[lid], DATA_TYPE, 4);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 128)
{
if(lid < 64)
{
tmp_local[lid] = MAX_OP(tmp_local[lid + 64], tmp_local[lid], DATA_TYPE, 4);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 64)
{
if(lid < 32)
{
tmp_local[lid] = MAX_OP(tmp_local[lid + 32], tmp_local[lid], DATA_TYPE, 4);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 32)
{
if(lid < 16)
{
tmp_local[lid] = MAX_OP(tmp_local[lid + 16], tmp_local[lid], DATA_TYPE, 4);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 16)
{
if(lid < 8)
{
tmp_local[lid] = MAX_OP(tmp_local[lid + 8], tmp_local[lid], DATA_TYPE, 4);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 8)
{
if(lid < 4)
{
tmp_local[lid] = MAX_OP(tmp_local[lid + 4], tmp_local[lid], DATA_TYPE, 4);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 4)
{
if(lid < 2)
{
tmp_local[lid] = MAX_OP(tmp_local[lid + 2], tmp_local[lid], DATA_TYPE, 4);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(lid == 0)
{
max_val_vec = MAX_OP(tmp_local[lid + 1], tmp_local[lid], DATA_TYPE, 4);
max_val_vec.s01 = MAX_OP(max_val_vec.s01, max_val_vec.s23, DATA_TYPE, 2);
max_val_vec.s0 = MAX_OP(max_val_vec.s0, max_val_vec.s1, DATA_TYPE, 1);
max_local = max_val_vec.s0;
}
barrier(CLK_LOCAL_MEM_FENCE);
/* Second section */
// Set sum vector
VEC_DATA_TYPE(DATA_TYPE, 4)
sum1D = 0;
DATA_TYPE max_val = max_local;
// Shift values, exp and sum
for(i = 0; i < width_; i++)
{
VEC_DATA_TYPE(DATA_TYPE, 4)
data = VLOAD(4)(0, (__global DATA_TYPE *)offset(&src, i * GRID_SIZE * 4, 0));
data = SUB_OP(data, max_val, DATA_TYPE, 4);
#ifdef BETA
data = MUL_OP(data, beta, DATA_TYPE, 4);
#endif /* BETA */
#ifdef LOG_SOFTMAX
VSTORE(4)
(data, 0, (__global DATA_TYPE *)offset(&dst, i * GRID_SIZE * 4, 0));
data = EXP_OP(data, DATA_TYPE, 4);
#else /* LOG_SOFTMAX */
data = EXP_OP(data, DATA_TYPE, 4);
VSTORE(4)
(data, 0, (__global DATA_TYPE *)offset(&dst, i * GRID_SIZE * 4, 0));
#endif /* LOG_SOFTMAX */
sum1D = ADD_OP(sum1D, data, DATA_TYPE, 4);
}
#ifdef NON_MULTIPLE_OF_GRID_SIZE
//TODO: Optimize the calculation (avoid %).
boundary_workitems = (width % (GRID_SIZE * 4)) / 4;
if(lid < boundary_workitems)
{
VEC_DATA_TYPE(DATA_TYPE, 4)
data = VLOAD(4)(0, (__global DATA_TYPE *)offset(&src, i * GRID_SIZE * 4, 0));
data = SUB_OP(data, max_val, DATA_TYPE, 4);
#ifdef BETA
data = MUL_OP(data, beta, DATA_TYPE, 4);
#endif /* BETA */
#ifdef LOG_SOFTMAX
VSTORE(4)
(data, 0, (__global DATA_TYPE *)offset(&dst, i * GRID_SIZE * 4, 0));
data = EXP_OP(data, DATA_TYPE, 4);
#else /* LOG_SOFTMAX */
data = EXP_OP(data, DATA_TYPE, 4);
VSTORE(4)
(data, 0, (__global DATA_TYPE *)offset(&dst, i * GRID_SIZE * 4, 0));
#endif /* LOG_SOFTMAX */
sum1D = ADD_OP(sum1D, data, DATA_TYPE, 4);
}
#ifdef NON_MULTIPLE_OF_VECTOR_SIZE
if(boundary_workitems == 0)
{
boundary_workitems = GRID_SIZE;
i--;
}
if(lid == (boundary_workitems - 1))
{
// Handle non multiple of vector size ((GRID_SIZE * i * 4) + 4, 0); move 4 float positions ahead, *4 is due to the stride
VEC_DATA_TYPE(DATA_TYPE, 4)
data = VLOAD(4)(0, (__global DATA_TYPE *)offset(&src, (GRID_SIZE * i * 4) + 4, 0));
data = SUB_OP(data, max_val, DATA_TYPE, 4);
#ifdef BETA
data = MUL_OP(data, beta, DATA_TYPE, 4);
#endif /* BETA */
#ifdef LOG_SOFTMAX
VSTORE(4)
(data, 0, (__global DATA_TYPE *)offset(&dst, (GRID_SIZE * i * 4) + 4, 0));
data = EXP_OP(data, DATA_TYPE, 4);
VEC_DATA_TYPE(SELECT_DATA_TYPE, 4)
widx = CONVERT(((uint4)(GRID_SIZE * i * 4) + boundary_workitems * 4 + idx4) < width, VEC_DATA_TYPE(SELECT_DATA_TYPE, 4));
data = select(0, data, widx);
#else /* LOG_SOFTMAX */
data = EXP_OP(data, DATA_TYPE, 4);
VEC_DATA_TYPE(SELECT_DATA_TYPE, 4)
widx = CONVERT(((uint4)(GRID_SIZE * i * 4) + boundary_workitems * 4 + idx4) < width, VEC_DATA_TYPE(SELECT_DATA_TYPE, 4));
data = select(0, data, widx);
VSTORE(4)
(data, 0, (__global DATA_TYPE *)offset(&dst, (GRID_SIZE * i * 4) + 4, 0));
#endif /* LOG_SOFTMAX */
sum1D = ADD_OP(sum1D, data, DATA_TYPE, 4);
}
#endif /* NON_MULTIPLE_OF_VECTOR_SIZE */
#endif /* NON_MULTIPLE_OF_GRID_SIZE */
tmp_local[lid] = sum1D;
barrier(CLK_LOCAL_MEM_FENCE);
if(GRID_SIZE >= 256)
{
if(lid < 128)
{
tmp_local[lid] = ADD_OP(tmp_local[lid + 128], tmp_local[lid], DATA_TYPE, 4);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 128)
{
if(lid < 64)
{
tmp_local[lid] = ADD_OP(tmp_local[lid + 64], tmp_local[lid], DATA_TYPE, 4);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 64)
{
if(lid < 32)
{
tmp_local[lid] = ADD_OP(tmp_local[lid + 32], tmp_local[lid], DATA_TYPE, 4);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 32)
{
if(lid < 16)
{
tmp_local[lid] = ADD_OP(tmp_local[lid + 16], tmp_local[lid], DATA_TYPE, 4);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 16)
{
if(lid < 8)
{
tmp_local[lid] = ADD_OP(tmp_local[lid + 8], tmp_local[lid], DATA_TYPE, 4);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 8)
{
if(lid < 4)
{
tmp_local[lid] = ADD_OP(tmp_local[lid + 4], tmp_local[lid], DATA_TYPE, 4);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 4)
{
if(lid < 2)
{
tmp_local[lid] = ADD_OP(tmp_local[lid + 2], tmp_local[lid], DATA_TYPE, 4);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(lid == 0)
{
sum1D = ADD_OP(tmp_local[lid + 1], tmp_local[lid], DATA_TYPE, 4);
// Perform max reduction
sum1D.s01 = ADD_OP(sum1D.s01, sum1D.s23, DATA_TYPE, 2);
sum1D.s0 = ADD_OP(sum1D.s0, sum1D.s1, DATA_TYPE, 1);
*((__global DATA_TYPE *)sum.ptr) = sum1D.s0;
}
}