blob: ac368c77ef226aaf8d85855f120a9d964cc7a886 [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/CL/kernels/CLPoolingLayerKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/ICLKernel.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include <set>
#include <string>
#include <tuple>
using namespace arm_compute;
namespace
{
// Internal window config info
using CLPoolingConfig = std::pair<unsigned int, BorderSize>; //num_elems_processed_per_iteration, border_size
void auto_init(const ITensorInfo *input, ITensorInfo *output, unsigned int pooled_w, unsigned int pooled_h)
{
TensorShape output_shape{ input->tensor_shape() };
output_shape.set(0, pooled_w);
output_shape.set(1, pooled_h);
auto_init_if_empty(*output, input->clone()->set_tensor_shape(output_shape));
}
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MSG((is_data_type_quantized_asymmetric(input->data_type()) && pool_info.pool_type() == PoolingType::L2),
"Unsupported combination of parameters!");
const bool is_global_pooling = pool_info.is_global_pooling();
const unsigned int pool_size = is_global_pooling ? input->tensor_shape().x() : pool_info.pool_size();
ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_global_pooling && (input->tensor_shape().x() != input->tensor_shape().y()),
"Global pooling is supported only with rectangular inputs!");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(!is_global_pooling && ((pool_info.pad_stride_info().pad().first >= pool_size) || (pool_info.pad_stride_info().pad().second >= pool_size)),
"Invalid pool size and pool pad combination!");
// Checks performed when output is configured
if(output->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(input, output);
unsigned int pooled_w = 0;
unsigned int pooled_h = 0;
std::tie(pooled_w, pooled_h) = scaled_dimensions(input->dimension(0),
input->dimension(1),
pool_size,
pool_size,
pool_info.pad_stride_info());
ARM_COMPUTE_RETURN_ERROR_ON_MSG((output->dimension(0) != pooled_w) || (output->dimension(1) != pooled_h),
"Invalid output pooling dimensions!");
}
return Status{};
}
std::tuple<Status, Window, CLPoolingConfig> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &pool_info)
{
int pool_pad_x = 0;
int pool_pad_y = 0;
int pool_stride_x = 0;
int pool_stride_y = 0;
unsigned int pooled_w = 0;
unsigned int pooled_h = 0;
int pool_size = pool_info.pool_size();
const PadStrideInfo pad_stride_info = pool_info.pad_stride_info();
std::tie(pool_pad_x, pool_pad_y) = pad_stride_info.pad();
std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
// Update pool size in case of global pooling
pool_size = pool_info.is_global_pooling() ? input->dimension(0) : pool_size;
// Check output dimensions
std::tie(pooled_w, pooled_h) = scaled_dimensions(input->dimension(0),
input->dimension(1),
pool_size,
pool_size,
pad_stride_info);
auto_init(input, output, pooled_w, pooled_h);
BorderSize border_size = BorderSize(pool_pad_y, pool_pad_x);
const DataType data_type = input->data_type();
const int input_width = input->dimension(0);
const int input_height = input->dimension(1);
unsigned int num_elems_processed_per_iteration = 1;
if((pool_size == 3) && !is_data_type_quantized_asymmetric(data_type))
{
const bool is_pool3x3_stride_le3 = (pool_size == 3) && (pool_stride_x <= 3) && !is_data_type_fixed_point(data_type);
int num_elems_read_per_iteration = pool_size;
if(is_pool3x3_stride_le3)
{
// Change the number of elements processed and the number of elements read per iteration
// for pooling 3x3 with stride less equal than 3
num_elems_processed_per_iteration = 4;
num_elems_read_per_iteration = pool_size * (pool_stride_x + 1);
}
const int upper_bound_w = ((pooled_w - 1) * pool_stride_x - pool_pad_x + num_elems_read_per_iteration) - input_width;
const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_y + pool_size) - input_height;
border_size.right = std::max(upper_bound_w, pool_pad_x);
border_size.bottom = std::max(upper_bound_h, pool_pad_y);
}
else
{
const int upper_bound_w = ((pooled_w - 1) * pool_stride_x - pool_pad_x + pool_size) - input_width;
const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_y + pool_size) - input_height;
border_size.right = std::max(upper_bound_w, pool_pad_x);
border_size.bottom = std::max(upper_bound_h, pool_pad_y);
}
Window win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration));
AccessWindowRectangle input_access(input, -pool_pad_x, -pool_pad_y, input_width + border_size.right, input_height + border_size.bottom);
AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
bool window_changed = update_window_and_padding(win, input_access, output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_tuple(err, win, CLPoolingConfig(num_elems_processed_per_iteration, border_size));
}
} // namespace
CLPoolingLayerKernel::CLPoolingLayerKernel()
: _input(nullptr), _output(nullptr), _pool_info(), _border_size(0), _num_elems_processed_per_iteration(1)
{
}
BorderSize CLPoolingLayerKernel::border_size() const
{
return _border_size;
}
void CLPoolingLayerKernel::configure(const ICLTensor *input, ICLTensor *output, const PoolingLayerInfo &pool_info)
{
int pool_pad_x = 0;
int pool_pad_y = 0;
int pool_stride_x = 0;
int pool_stride_y = 0;
unsigned int pooled_w = 0;
unsigned int pooled_h = 0;
const PoolingType pool_type = pool_info.pool_type();
int pool_size = pool_info.pool_size();
const PadStrideInfo pad_stride_info = pool_info.pad_stride_info();
const bool exclude_padding = pool_info.exclude_padding();
std::tie(pool_pad_x, pool_pad_y) = pad_stride_info.pad();
std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
// Update pool size in case of global pooling
pool_size = pool_info.is_global_pooling() ? input->info()->dimension(0) : pool_size;
// Check output dimensions
std::tie(pooled_w, pooled_h) = scaled_dimensions(input->info()->dimension(0),
input->info()->dimension(1),
pool_size,
pool_size,
pad_stride_info);
auto_init(input->info(), output->info(), pooled_w, pooled_h);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), pool_info));
// Set instance variables
_input = input;
_output = output;
_pool_info = pool_info;
const GPUTarget gpu_target = get_arch_from_target(get_target());
const DataType data_type = input->info()->data_type();
// Set build options
CLBuildOptions build_opts;
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(data_type));
build_opts.add_option("-DPOOL_" + string_from_pooling_type(pool_type));
build_opts.add_option_if(is_data_type_fixed_point(data_type),
"-DFIXED_POINT_POSITION=" + support::cpp11::to_string(input->info()->fixed_point_position()));
build_opts.add_option("-DSTRIDE_X=" + support::cpp11::to_string(pool_stride_x));
if(pool_type != PoolingType::MAX)
{
build_opts.add_option_if(exclude_padding, "-DEXCLUDE_PADDING");
build_opts.add_option("-DMAX_WIDTH=" + support::cpp11::to_string(input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_x)));
build_opts.add_option("-DMAX_HEIGHT=" + support::cpp11::to_string(input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_y)));
build_opts.add_option("-DSTRIDE_Y=" + support::cpp11::to_string(pool_stride_y));
build_opts.add_option("-DPAD_X=" + support::cpp11::to_string(pool_pad_x));
build_opts.add_option("-DPAD_Y=" + support::cpp11::to_string(pool_pad_y));
}
// Create kernel
if((pool_size == 3) && !is_data_type_quantized_asymmetric(data_type))
{
// Check if we have pool3x3 with stride_x less equal than 3. In these cases, run an optimized OpenCL kernel where
// each thread computes 4 output elements
const bool is_pool3x3_stride_le3 = (pool_size == 3) && (pool_stride_x <= 3) && !is_data_type_fixed_point(data_type);
std::string kernel_name = ((is_pool3x3_stride_le3) ? "pooling_layer_optimized_" : "pooling_layer_")
+ support::cpp11::to_string(pool_size);
_kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));
}
else // Run general case
{
build_opts.add_option("-DPOOL_SIZE=" + support::cpp11::to_string(pool_size));
build_opts.add_option_if(data_type == DataType::F16, "-DFP16");
std::string kernel_name = is_data_type_quantized_asymmetric(data_type) ? "pooling_layer_N_quantized" : "pooling_layer_N";
_kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));
}
// Configure kernel window
auto win_config = validate_and_configure_window(input->info(), output->info(), pool_info);
ARM_COMPUTE_ERROR_THROW_ON(std::get<0>(win_config));
// Configure the local work size (hint) from the first two dimensions of the global work size.
// On Bifrost, this works for up to 35x35xC filters, for which the pooling_layer_3_optimized
// kernel is launched with gws=(9, 33, C). In any case, the hint will be ignored if it is
// invalid (e.g. exceeds the maximum workgroup size that the kernel can be launched with).
if(gpu_target == GPUTarget::BIFROST)
{
cl::NDRange gws = ICLKernel::gws_from_window(std::get<1>(win_config));
_lws_hint = cl::NDRange(gws[0], gws[1], 1);
}
ICLKernel::configure(std::get<1>(win_config));
CLPoolingConfig pooling_config = std::get<2>(win_config);
_num_elems_processed_per_iteration = pooling_config.first;
_border_size = pooling_config.second;
// Set config_id for enabling LWS tuning
_config_id = "pooling_layer_";
_config_id += lower_string(string_from_data_type(data_type));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(0));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(1));
}
Status CLPoolingLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, pool_info));
ARM_COMPUTE_RETURN_ON_ERROR(std::get<0>(validate_and_configure_window(input->clone().get(), output->clone().get(), pool_info)));
return Status{};
}
void CLPoolingLayerKernel::run(const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
unsigned int pool_pad_x, pool_pad_y, pool_stride_x, pool_stride_y = 0;
std::tie(pool_pad_x, pool_pad_y) = _pool_info.pad_stride_info().pad();
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
Window slice = window_collapsed.first_slice_window_3D();
do
{
// Upsample input by pool size
Window in_slice(slice);
in_slice.set(Window::DimX, Window::Dimension(in_slice.x().start() - pool_pad_x, in_slice.x().end() * pool_stride_x, pool_stride_x * _num_elems_processed_per_iteration));
in_slice.set(Window::DimY, Window::Dimension(in_slice.y().start() - pool_pad_y, in_slice.y().end() * pool_stride_y, pool_stride_y));
// Set inputs
unsigned int idx = 0;
add_3D_tensor_argument(idx, _input, in_slice);
add_3D_tensor_argument(idx, _output, slice);
enqueue(queue, *this, slice, _lws_hint);
}
while(window_collapsed.slide_window_slice_3D(slice));
}