blob: 8afd036e7c576aae5599fe6eef3e611e0bd7ce18 [file] [log] [blame]
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/gpu/cl/operators/ClFullyConnected.h"
#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include "src/core/CL/kernels/CLFillBorderKernel.h"
#include "src/core/helpers/MemoryHelpers.h"
#include "src/gpu/cl/operators/ClConvertFullyConnectedWeights.h"
#include "src/gpu/cl/operators/ClFlatten.h"
#include "src/gpu/cl/operators/ClGemm.h"
#include "src/gpu/cl/operators/ClGemmLowpMatrixMultiplyCore.h"
#include "src/gpu/cl/operators/ClTranspose.h"
#include "src/gpu/cl/utils/ClAuxTensorHandler.h"
#include "src/common/utils/Log.h"
#include "support/Cast.h"
#include <algorithm>
namespace arm_compute
{
namespace opencl
{
using namespace arm_compute::experimental;
using namespace arm_compute::misc::shape_calculator;
namespace
{
Status construct_gemmlowp_output_stage(const ITensorInfo &src, const ITensorInfo &weights, const ITensorInfo &dst,
GEMMLowpOutputStageInfo &gemmlowp_output_stage, ActivationLayerInfo activation_info)
{
gemmlowp_output_stage.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
gemmlowp_output_stage.gemmlowp_offset = 0;
gemmlowp_output_stage.gemmlowp_multiplier = 0;
gemmlowp_output_stage.gemmlowp_shift = 0;
const auto data_type = src.data_type();
// Configure output stage for quantized case
if(is_data_type_quantized_asymmetric(data_type))
{
const QuantizationInfo oq_info = dst.quantization_info();
const UniformQuantizationInfo iq_unif = src.quantization_info().uniform();
const UniformQuantizationInfo wq_unif = weights.quantization_info().uniform();
const UniformQuantizationInfo oq_unif = oq_info.uniform();
const auto output_quant_info = (dst.total_size() == 0) ? iq_unif : oq_unif;
const float multiplier = (iq_unif.scale * wq_unif.scale) / output_quant_info.scale;
int output_multiplier = 0;
int output_shift = 0;
ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift));
PixelValue type_min{};
PixelValue type_max{};
std::tie(type_min, type_max) = get_min_max(data_type);
if(activation_info.enabled())
{
std::tie(type_min, type_max) = get_quantized_activation_min_max(activation_info, data_type, output_quant_info);
}
// Set the GEMMLowp output stage info
gemmlowp_output_stage.gemmlowp_offset = output_quant_info.offset;
gemmlowp_output_stage.gemmlowp_multiplier = output_multiplier;
gemmlowp_output_stage.gemmlowp_shift = output_shift;
gemmlowp_output_stage.gemmlowp_multipliers.push_back(output_multiplier);
gemmlowp_output_stage.gemmlowp_shifts.push_back(output_shift);
type_min.get(gemmlowp_output_stage.gemmlowp_min_bound);
type_max.get(gemmlowp_output_stage.gemmlowp_max_bound);
}
return Status{};
}
Status validate_mm(const ITensorInfo &src, const ITensorInfo &weights, const ITensorInfo *bias, const ITensorInfo &dst, const FullyConnectedLayerInfo &fc_info)
{
GEMMLowpOutputStageInfo gemmlowp_output_stage;
ARM_COMPUTE_RETURN_ON_ERROR(construct_gemmlowp_output_stage(src, weights, dst, gemmlowp_output_stage, fc_info.activation_info));
const GEMMInfo &gemm_info = GEMMInfo(false, // is_a_reshaped
false, // is_b_reshaped
true, // reshape_b_only_on_first_run
0, // depth_output_gemm3d
false, // reinterpret_input_as_3d
fc_info.retain_internal_weights, // retain_internal_weights
gemmlowp_output_stage, // gemmlowp_output_stage
fc_info.fp_mixed_precision, // fp_mixed_precision
false, // fast_math
true, // broadcast_bias
ActivationLayerInfo()); // activation_info
if(is_data_type_quantized_asymmetric(src.data_type()))
{
const UniformQuantizationInfo iq_info = src.quantization_info().uniform();
const UniformQuantizationInfo wq_info = weights.quantization_info().uniform();
// Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
// Extract and negate src and weights offset
const QuantizationInfo src_quantization_info(iq_info.scale, -iq_info.offset);
const QuantizationInfo weights_quantization_info(wq_info.scale, -wq_info.offset);
// Validate gemmlowp function
ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpMatrixMultiplyCore::validate(&src.clone()->set_quantization_info(src_quantization_info),
&weights.clone()->set_quantization_info(weights_quantization_info),
bias,
&dst,
gemm_info));
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(ClGemm::validate(&src, &weights, bias, &dst, 1.f, 1.f, gemm_info));
}
return Status{};
}
} // namespace
ClFullyConnected::ClFullyConnected()
: _convert_weights(nullptr),
_flatten(nullptr),
_reshape_weights(nullptr),
_mm_gemm(nullptr),
_mm_gemmlowp(nullptr),
_aux_mem(Count)
{
}
ClFullyConnected::~ClFullyConnected() = default;
void ClFullyConnected::configure_mm(const CLCompileContext &compile_context, ITensorInfo *src, ITensorInfo *weights, ITensorInfo *bias, ITensorInfo *dst,
const FullyConnectedLayerInfo &fc_info)
{
GEMMLowpOutputStageInfo gemmlowp_output_stage;
construct_gemmlowp_output_stage(*src, *weights, *dst, gemmlowp_output_stage, fc_info.activation_info);
const GEMMInfo &gemm_info = GEMMInfo(false, // is_a_reshaped
false, // is_b_reshaped
true, // reshape_b_only_on_first_run
0, // depth_output_gemm3d
false, // reinterpret_input_as_3d
fc_info.retain_internal_weights, // retain_internal_weights
gemmlowp_output_stage, // gemmlowp_output_stage
fc_info.fp_mixed_precision, // fp_mixed_precision
false, // fast_math
true, // broadcast_bias
fc_info.activation_info); // activation_info
if(_is_quantized)
{
// Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
// Extract and negate input and weights offset
const QuantizationInfo src_quantization_info = src->quantization_info();
const QuantizationInfo weights_quantization_info = weights->quantization_info();
TensorInfo src_info = src->clone()->set_quantization_info(src_quantization_info);
TensorInfo weights_info = weights->clone()->set_quantization_info(weights_quantization_info);
src_info.set_quantization_info(QuantizationInfo(src_quantization_info.uniform().scale, -src_quantization_info.uniform().offset));
weights_info.set_quantization_info(QuantizationInfo(weights_quantization_info.uniform().scale, -weights_quantization_info.uniform().offset));
// Configure gemmlowp function
_mm_gemmlowp = std::make_unique<ClGemmLowpMatrixMultiplyCore>();
_mm_gemmlowp->configure(compile_context, &src_info, &weights_info, bias, dst, gemm_info);
}
else
{
// Configure matrix multiply kernel
_mm_gemm = std::make_unique<ClGemm>();
_mm_gemm->configure(compile_context, src, weights, bias, dst, 1.f, 1.f, gemm_info);
}
}
void ClFullyConnected::configure_conv_fc(const CLCompileContext &compile_context, ITensorInfo *src, ITensorInfo *weights, ITensorInfo *bias, ITensorInfo *dst,
const FullyConnectedLayerInfo &fc_info)
{
ARM_COMPUTE_ERROR_ON((weights->dimension(1) != (src->dimension(0) * src->dimension(1) * src->dimension(2))));
// If the fully connected layer is called after a convolution layer, the input tensor must be linearized
// Initialize output tensor for flatten
_flattened_src = src->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_flatten_shape(src)).set_data_layout(DataLayout::NCHW);
// Configure flatten kernel
_flatten = std::make_unique<ClFlatten>();
_flatten->configure(compile_context, src, &_flattened_src);
// Configure matrix multiply kernel
configure_mm(compile_context, &_flattened_src, weights, bias, dst, fc_info);
}
void ClFullyConnected::configure_fc_fc(const CLCompileContext &compile_context, ITensorInfo *src, ITensorInfo *weights, ITensorInfo *bias, ITensorInfo *dst,
const FullyConnectedLayerInfo &fc_info)
{
ARM_COMPUTE_ERROR_ON(src->dimension(0) != weights->dimension(1));
// Configure matrix multiply kernel
configure_mm(compile_context, src, weights, bias, dst, fc_info);
}
void ClFullyConnected::configure(const CLCompileContext &compile_context, ITensorInfo *src, ITensorInfo *weights, ITensorInfo *biases, ITensorInfo *dst,
FullyConnectedLayerInfo fc_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
// Perform validate step
ARM_COMPUTE_ERROR_THROW_ON(ClFullyConnected::validate(src, weights, biases, dst, fc_info));
ARM_COMPUTE_LOG_PARAMS(src, weights, biases, dst, fc_info);
_are_weights_converted = true;
_are_weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
_is_fc_after_conv = true;
_is_quantized = is_data_type_quantized_asymmetric(src->data_type());
_is_prepared = fc_info.retain_internal_weights;
_weights_to_use = TensorInfo(*weights);
_weights_to_use_idx = ACL_SRC_1;
// With the Fully Connected layer we can have 4 different cases:
// 1) Convolution layer -> Fully Connected layer without batches
// 2) Fully Connected layer -> Fully Connected layer without batches
// 3) Convolution layer -> Fully Connected layer with batches
// 4) Fully Connected layer -> Fully Connected layer with batches
// Check if we have a fully connected layer with batches
const bool is_batched_fc_layer = dst->dimension(1) > 1;
if(is_batched_fc_layer)
{
_is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(src->tensor_shape().cbegin() + 3,
src->tensor_shape().cend(),
dst->tensor_shape().cbegin() + 1));
}
else
{
_is_fc_after_conv = src->num_dimensions() > 1;
}
ITensorInfo *weights_used = weights;
// Reshape weights if needed
if(!_are_weights_reshaped)
{
// Reshape the weights
_reshape_weights = std::make_unique<ClTranspose>();
_reshape_weights->configure(compile_context, weights, &_reshaped_weights);
weights_used = &_reshaped_weights;
_weights_to_use_idx = offset_int_vec(TransposedWeights);
}
// Convert weights if needed
if(_is_fc_after_conv && (src->data_layout() != fc_info.weights_trained_layout))
{
// Convert weights
_convert_weights = std::make_unique<ClConvertFullyConnectedWeights>();
_convert_weights->configure(compile_context,
weights_used,
&_converted_weights,
src->tensor_shape(),
fc_info.weights_trained_layout);
weights_used = &_converted_weights;
_weights_to_use_idx = offset_int_vec(ConvertedWeights);
_are_weights_converted = false;
}
if(_is_fc_after_conv)
{
// Fully Connected layer after a Convolution Layer without batches
configure_conv_fc(compile_context, src, weights_used, biases, dst, fc_info);
}
else
{
// Fully Connected layer after a Fully Connected Layer without batches
configure_fc_fc(compile_context, src, weights_used, biases, dst, fc_info);
}
// Update TensorInfo of final weights used (Need to be done in the end due to padding expansion)
_weights_to_use = *weights_used;
// Set auxiliary memory requirements
auto gemm_mem_req = (_is_quantized) ? _mm_gemmlowp->workspace() : _mm_gemm->workspace();
for(unsigned int i = 0; i < gemm_mem_req.size(); ++i)
{
_aux_mem[i] = gemm_mem_req[i];
}
if(_aux_mem[1].size > 0 || _aux_mem[2].size > 0) // Persistent weights memory on GEMMs
{
// Release permuted weights at the of prepare as they are further transposed by the assembly dispatch
_aux_mem[TransposedWeights] = MemoryInfo(offset_int_vec(TransposedWeights), MemoryLifetime::Prepare, _reshaped_weights.total_size());
_aux_mem[ConvertedWeights] = MemoryInfo(offset_int_vec(ConvertedWeights), MemoryLifetime::Prepare, _converted_weights.total_size());
}
else
{
// Release permuted weights at the of prepare as they are further transposed by the assembly dispatch
const auto transposed_wei_lft = (_weights_to_use_idx == offset_int_vec(TransposedWeights)) ? MemoryLifetime::Persistent : MemoryLifetime::Prepare;
const auto converted_wei_lft = (_weights_to_use_idx == offset_int_vec(ConvertedWeights)) ? MemoryLifetime::Persistent : MemoryLifetime::Prepare;
_aux_mem[TransposedWeights] = MemoryInfo(offset_int_vec(TransposedWeights), transposed_wei_lft, _reshaped_weights.total_size());
_aux_mem[ConvertedWeights] = MemoryInfo(offset_int_vec(ConvertedWeights), converted_wei_lft, _converted_weights.total_size());
}
_aux_mem[FlattenedSrc] = MemoryInfo(offset_int_vec(FlattenedSrc), MemoryLifetime::Temporary, _flattened_src.total_size());
}
Status ClFullyConnected::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst,
FullyConnectedLayerInfo fc_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights, dst);
ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(fc_info.activation_info.enabled() && is_data_type_quantized(src->data_type()) && fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::RELU
&& fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::BOUNDED_RELU && fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU);
ARM_COMPUTE_RETURN_ERROR_ON(!weights->are_values_constant() && (!fc_info.are_weights_reshaped || fc_info.transpose_weights));
bool weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
bool is_fc_after_conv = true;
const ITensorInfo &flatten_src = TensorInfo(src->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_flatten_shape(src)).set_data_layout(DataLayout::NCHW));
const ITensorInfo &reshaped_weights = TensorInfo(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_transposed_shape(*weights)));
const ITensorInfo &converted_weights = weights_reshaped ? TensorInfo(weights->clone()->set_is_resizable(true).reset_padding()) : TensorInfo(*reshaped_weights.clone());
// With the Fully Connected layer we can have 4 different cases:
// 1) Convolution layer -> Fully Connected layer without batches
// 2) Fully Connected layer -> Fully Connected layer without batches
// 3) Convolution layer -> Fully Connected layer with batches
// 4) Fully Connected layer -> Fully Connected layer with batches
const ITensorInfo *src_to_use = src;
const ITensorInfo *weights_to_use = weights;
if(biases != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
if(is_data_type_quantized(src->data_type()))
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, biases);
}
}
// Check if we have a fully connected layer with batches
const bool is_batched_fc_layer = dst->dimension(1) > 1;
if(is_batched_fc_layer)
{
is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(src->tensor_shape().cbegin() + 3,
src->tensor_shape().cend(),
dst->tensor_shape().cbegin() + 1));
}
else
{
is_fc_after_conv = src->num_dimensions() > 1;
}
if(!weights_reshaped)
{
// Validate reshape weights kernel
ARM_COMPUTE_RETURN_ON_ERROR(ClTranspose::validate(weights, &reshaped_weights));
weights_to_use = &reshaped_weights;
}
if(is_fc_after_conv && (src->data_layout() != fc_info.weights_trained_layout))
{
// Validate convert weights kernel
ARM_COMPUTE_RETURN_ON_ERROR(ClConvertFullyConnectedWeights::validate(weights_to_use,
&converted_weights,
src->tensor_shape(),
fc_info.weights_trained_layout));
weights_to_use = &converted_weights;
}
if(is_fc_after_conv)
{
// Fully Connected layer after a Convolution Layer without batches
ARM_COMPUTE_RETURN_ERROR_ON((weights_to_use->dimension(1) != (src->dimension(0) * src->dimension(1) * src->dimension(2))));
// Validate flatten kernel
ARM_COMPUTE_RETURN_ON_ERROR(ClFlatten::validate(src, &flatten_src));
src_to_use = &flatten_src;
}
else
{
// Fully Connected layer after a Fully Connected Layer without batches
ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(0) != weights_to_use->dimension(1));
}
// Validate matrix multiply kernel
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(*src_to_use, *weights_to_use, biases, *dst, fc_info));
return Status{};
}
void ClFullyConnected::run(ITensorPack &tensors)
{
prepare(tensors);
auto src = tensors.get_const_tensor(ACL_SRC_0);
CLAuxTensorHandler flattened_src(offset_int_vec(FlattenedSrc), _flattened_src, tensors, false);
CLAuxTensorHandler weights(_weights_to_use_idx, _weights_to_use, tensors, false);
// Linearize input if it comes from a convolutional layer
if(_is_fc_after_conv)
{
ITensorPack flatten_pack{ { ACL_SRC, src }, { ACL_DST, flattened_src.get() } };
_flatten->run(flatten_pack);
}
ITensorPack gemm_pack = tensors;
gemm_pack.add_const_tensor(ACL_SRC_0, (_is_fc_after_conv) ? flattened_src.get() : src);
if(_weights_to_use_idx != ACL_SRC_1)
{
gemm_pack.add_const_tensor(ACL_SRC_1, weights.get());
}
// Run matrix multiply
if(_is_quantized)
{
_mm_gemmlowp->run(gemm_pack);
}
else
{
_mm_gemm->run(gemm_pack);
}
}
void ClFullyConnected::prepare(ITensorPack &tensors)
{
if(!_is_prepared)
{
auto weights = tensors.get_const_tensor(ACL_SRC_1);
CLAuxTensorHandler reshaped_weights(offset_int_vec(TransposedWeights), _reshaped_weights, tensors, false);
CLAuxTensorHandler converted_weights(offset_int_vec(ConvertedWeights), _converted_weights, tensors, false);
// Pointer to current weights
const ITensor *cur_weights = weights;
// Reshape of the weights if needed (happens only once)
if(!_are_weights_reshaped)
{
// Run reshape weights kernel and mark weights as unused
ITensorPack transpose_pack{ { ACL_SRC, weights }, { ACL_DST, reshaped_weights.get() } };
_reshape_weights->run(transpose_pack);
cur_weights->mark_as_unused();
cur_weights = reshaped_weights.get();
_are_weights_reshaped = true;
}
// Convert weights if needed (happens only once)
if(!_are_weights_converted)
{
ITensorPack convert_pack{ { ACL_SRC, cur_weights }, { ACL_DST, converted_weights.get() } };
_convert_weights->run(convert_pack);
cur_weights->mark_as_unused();
cur_weights = converted_weights.get();
_are_weights_converted = true;
}
tensors.add_const_tensor(ACL_SRC_1, cur_weights);
// Prepare GEMM prepare and release unused weights
if(!_is_quantized)
{
_mm_gemm->prepare(tensors);
}
else
{
_mm_gemmlowp->prepare(tensors);
}
_is_prepared = true;
}
}
experimental::MemoryRequirements ClFullyConnected::workspace() const
{
return _aux_mem;
}
} // namespace opencl
} // namespace arm_compute