blob: f9b3cd36203eadc6a16e3157c415e076c154b161 [file] [log] [blame]
/*
* Copyright (c) 2019-2021, 2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#if defined(VEC_SIZE) && defined(DATA_TYPE) && defined(INTERNAL_DATA_TYPE) & defined(DIM_X) && defined(DIM_Y) && defined(DIM_Z)
/** This function computes the mean and variance of each plane of the input tensor and provides it as output.
*
* @attention Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
* @attention Data type should be passed using the -DDATA_TYPE=data_type compile flag, e.g. -DDATA_TYPE=float
* @attention Dimensions X, Y, and Z should be given as a preprocessor argument with -DDIM_X=value, -DDIM_Y=value, -DDIM_Z=value. e.g. -DDIM_X=6, -DDIM_Y=2, -DDIM_Z=7
*
* @param[in] input_ptr Pointer to the first source tensor. Supported data types: F16/F32
* @param[in] input_stride_x Stride of the first source tensor in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the first source tensor in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_stride_z Stride of the first source tensor in Z dimension (in bytes)
* @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes)
* @param[in] input_step_w input_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source tensor
* @param[out] output_ptr (Optional) Pointer to the destination tensor. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination tensor in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination tensor in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the destination tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination tensor
*/
__kernel void compute_mean_var(
TENSOR4D_DECLARATION(input),
TENSOR3D_DECLARATION(output))
{
Tensor4D in = CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(input);
Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
#if defined(NHWC)
const int ch = get_global_id(0); // Current channel
const int batch = get_global_id(1); // Current batch
const int elements_plane = DIM_Y * DIM_Z;
INTERNAL_DATA_TYPE part_sum = 0.f;
INTERNAL_DATA_TYPE part_sum_sq = 0.f;
const int in_offset = input_offset_first_element_in_bytes + batch * input_stride_w + ch * sizeof(DATA_TYPE);
for(int i_w = 0; i_w < DIM_Y; ++i_w)
{
for(int i_h = 0; i_h < DIM_Z; ++i_h)
{
INTERNAL_DATA_TYPE data = (INTERNAL_DATA_TYPE) * ((__global DATA_TYPE *)tensor4D_offset(&in, ch, i_w, i_h, batch));
part_sum += data;
part_sum_sq += data * data;
}
}
INTERNAL_DATA_TYPE mean = (part_sum / elements_plane);
INTERNAL_DATA_TYPE var = (part_sum_sq / elements_plane) - (mean * mean);
__global INTERNAL_DATA_TYPE *output_address0 = (__global INTERNAL_DATA_TYPE *)tensor3D_offset(&out, ch, 0, batch);
*output_address0 = mean;
__global INTERNAL_DATA_TYPE *output_address1 = (__global INTERNAL_DATA_TYPE *)tensor3D_offset(&out, ch, 1, batch);
*output_address1 = var;
#else // !defined(NHWC)
const int ch = get_global_id(2) % DIM_Z; // Current channel
const int batch = get_global_id(2) / DIM_Z; // Current batch
const int elements_plane = DIM_X * DIM_Y;
VEC_DATA_TYPE(INTERNAL_DATA_TYPE, VEC_SIZE)
part_sum = 0.f;
VEC_DATA_TYPE(INTERNAL_DATA_TYPE, VEC_SIZE)
part_sum_sq = 0.f;
// Calculate partial sum
for(int y = 0; y < DIM_Y; ++y)
{
int x = 0;
for(; x <= (DIM_X - VEC_SIZE); x += VEC_SIZE)
{
// Load data
VEC_DATA_TYPE(INTERNAL_DATA_TYPE, VEC_SIZE)
data = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)tensor4D_offset(&in, x, y, ch, batch)), VEC_DATA_TYPE(INTERNAL_DATA_TYPE, VEC_SIZE));
part_sum += data;
part_sum_sq += data * data;
}
// Left-overs loop
for(; x < DIM_X; ++x)
{
INTERNAL_DATA_TYPE data = (INTERNAL_DATA_TYPE)(*((__global DATA_TYPE *)tensor4D_offset(&in, x, y, ch, batch)));
part_sum.s0 += data;
part_sum_sq.s0 += data * data;
}
}
// Perform reduction
#if VEC_SIZE > 8
part_sum.s01234567 += part_sum.s89abcdef;
part_sum_sq.s01234567 += part_sum_sq.s89abcdef;
#endif // VEC_SIZE > 8
#if VEC_SIZE > 4
part_sum.s0123 += part_sum.s4567;
part_sum_sq.s0123 += part_sum_sq.s4567;
#endif // VEC_SIZE > 4
#if VEC_SIZE > 2
part_sum.s01 += part_sum.s23;
part_sum_sq.s01 += part_sum_sq.s23;
#endif // VEC_SIZE > 2
part_sum.s0 += part_sum.s1;
part_sum_sq.s0 += part_sum_sq.s1;
INTERNAL_DATA_TYPE sum = (INTERNAL_DATA_TYPE)part_sum.s0;
INTERNAL_DATA_TYPE sum_sq = (INTERNAL_DATA_TYPE)part_sum_sq.s0;
const INTERNAL_DATA_TYPE mean = (sum / elements_plane);
const INTERNAL_DATA_TYPE var = (sum_sq / elements_plane) - (mean * mean);
__global INTERNAL_DATA_TYPE *output_address0 = (__global INTERNAL_DATA_TYPE *)tensor3D_offset(&out, ch, 0, batch);
*output_address0 = mean;
__global INTERNAL_DATA_TYPE *output_address1 = (__global INTERNAL_DATA_TYPE *)tensor3D_offset(&out, ch, 1, batch);
*output_address1 = var;
#endif // defined(NHWC)
}
#endif /* defined(VEC_SIZE) && defined(DATA_TYPE) && defined(DIM_X) && defined(DIM_Y) && defined(DIM_Z) */
#if defined(VEC_SIZE) && defined(DATA_TYPE) && defined(INTERNAL_DATA_TYPE) && defined(GAMMA) && defined(BETA) && defined(EPSILON) && defined(DIM_X) && defined(DIM_Y) && defined(DIM_Z)
/** This function normalizes the input 2D tensor across the first dimension with respect to mean and standard deviation of the same dimension.
*
* @attention Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
* @attention Data type should be passed using the -DDATA_TYPE=data_type compile flag, e.g. -DDATA_TYPE=float
* @attention The scale scalar value applied to the normalized tensor should be passed using the -DGAMMA=value compile flag, e.g. -DGAMMA=1.3
* @attention The offset scalar value applied to the normalized tensor should be passed using the -DBETA=value compile flag, e.g. -DBETA=2.4
* @attention Normalization epsilon parameter should be given as a preprocessor argument with -DEPSILON=value. e.g. -DEPSILON=0.001f
* @attention Dimensions X, Y, and Z should be given as a preprocessor argument with -DDIM_X=value, -DDIM_Y=value, -DDIM_Z=value. e.g. -DDIM_X=6, -DDIM_Y=2, -DDIM_Z=7
*
* @param[in] input_ptr Pointer to the first source tensor. Supported data types: F16/F32
* @param[in] input_stride_x Stride of the first source tensor in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the first source tensor in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_stride_z Stride of the first source tensor in Z dimension (in bytes)
* @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source tensor
* @param[out] output_ptr (Optional) Pointer to the destination tensor. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination tensor in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination tensor in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the destination tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination tensor
*/
__kernel void instance_normalization(
TENSOR4D_DECLARATION(input),
TENSOR3D_DECLARATION(mean_var)
#ifndef IN_PLACE
,
TENSOR4D_DECLARATION(output)
#endif /* IN_PLACE */
)
{
Tensor4D in = CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(input);
Tensor3D mean_var = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(mean_var);
#ifndef IN_PLACE
Tensor4D out = CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(output);
#endif /* IN_PLACE */
#if defined(NHWC)
const int ch = get_global_id(0); // Current channel
const int batch = get_global_id(2); // Current batch
#else /* defined(NHWC) */
const int ch = get_global_id(2) % DIM_Z; // Current channel
const int batch = get_global_id(2) / DIM_Z; // Current batch
#endif /* defined(NHWC) */
const __global INTERNAL_DATA_TYPE *mean_ptr = (__global INTERNAL_DATA_TYPE *)tensor3D_offset(&mean_var, ch, 0, batch);
const __global INTERNAL_DATA_TYPE *var_ptr = (__global INTERNAL_DATA_TYPE *)tensor3D_offset(&mean_var, ch, 1, batch);
const INTERNAL_DATA_TYPE mean = (INTERNAL_DATA_TYPE) * mean_ptr;
const INTERNAL_DATA_TYPE var = (INTERNAL_DATA_TYPE) * var_ptr;
const INTERNAL_DATA_TYPE multip = GAMMA / sqrt(var + EPSILON);
const INTERNAL_DATA_TYPE beta = (INTERNAL_DATA_TYPE)BETA;
#if defined(NHWC)
const int in_offset = input_offset_first_element_in_bytes + batch * input_stride_w + ch * sizeof(DATA_TYPE);
#ifndef IN_PLACE
const int out_offset = output_offset_first_element_in_bytes + batch * input_stride_w + ch * sizeof(DATA_TYPE);
#endif /* IN_PLACE */
for(int i_w = 0; i_w < DIM_Y; ++i_w)
{
for(int i_h = 0; i_h < DIM_Z; ++i_h)
{
__global DATA_TYPE *input_address = (__global DATA_TYPE *)tensor4D_offset(&in, ch, i_w, i_h, batch);
#ifdef IN_PLACE
__global DATA_TYPE *output_address = input_address;
#else /* !IN_PLACE */
__global DATA_TYPE *output_address = (__global DATA_TYPE *)tensor4D_offset(&out, ch, i_w, i_h, batch);
#endif /* IN_PLACE */
*(output_address) = (*(input_address) - mean) * multip + (INTERNAL_DATA_TYPE)BETA;
}
}
#else // !defined(NHWC)
for(int y = 0; y < DIM_Y; ++y)
{
int x = 0;
for(; x <= (DIM_X - VEC_SIZE); x += VEC_SIZE)
{
__global DATA_TYPE *input_address = (__global DATA_TYPE *)tensor4D_offset(&in, x, y, ch, batch);
#ifdef IN_PLACE
__global DATA_TYPE *output_address = input_address;
#else /* !IN_PLACE */
__global DATA_TYPE *output_address = (__global DATA_TYPE *)tensor4D_offset(&out, x, y, ch, batch);
#endif /* IN_PLACE */
VEC_DATA_TYPE(INTERNAL_DATA_TYPE, VEC_SIZE)
data = CONVERT(VLOAD(VEC_SIZE)(0, input_address), VEC_DATA_TYPE(INTERNAL_DATA_TYPE, VEC_SIZE));
VEC_DATA_TYPE(INTERNAL_DATA_TYPE, VEC_SIZE)
res = (data - mean) * multip + (INTERNAL_DATA_TYPE)BETA;
VSTORE(VEC_SIZE)
(CONVERT(res, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)), 0, output_address);
}
// Left-overs loop
for(; x < DIM_X; ++x)
{
__global DATA_TYPE *input_address = (__global DATA_TYPE *)tensor4D_offset(&in, x, y, ch, batch);
#ifdef IN_PLACE
__global DATA_TYPE *output_address = input_address;
#else /* !IN_PLACE */
__global DATA_TYPE *output_address = (__global DATA_TYPE *)tensor4D_offset(&out, x, y, ch, batch);
#endif /* IN_PLACE */
*(output_address) = (*(input_address) - mean) * multip + (INTERNAL_DATA_TYPE)BETA;
}
}
#endif // defined(NHWC)
}
#endif /* defined(VEC_SIZE) && defined(DATA_TYPE) && defined(INTERNAL_DATA_TYPE) && defined(GAMMA) && defined(BETA) && defined(EPSILON) && defined(DIM_X) && defined(DIM_Y) && defined(DIM_Z) */