blob: 233beb3aa91a609e4cd557bce898a1a06cb42bda [file] [log] [blame]
/*
* Copyright (c) 2018-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#include "tile_helpers.h"
#if defined(DATA_TYPE) && defined(VEC_SIZE) && defined(NUM_GROUPS) && defined(K) && defined(SRC_DIM_Z)
// Check valid VEC_SIZES
#if VEC_SIZE != 1 && VEC_SIZE != 2 && VEC_SIZE != 3 && VEC_SIZE != 4 && VEC_SIZE != 8 && VEC_SIZE != 16
#error "Only vector sizes 1, 2, 3, 4, 8 and 16 are supported"
#endif // VEC_SIZE != 1 && VEC_SIZE != 2 && VEC_SIZE != 3 && VEC_SIZE != 4 && VEC_SIZE != 8 && VEC_SIZE != 16
#define DIV_MOD_UINT(x, y, div_res, mod_res) \
({ \
div_res = (uint)((x) * (float)(1.0f / (float)(y))); \
uint r = div_res * (y); \
mod_res = (x)-r; \
})
#if defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_DIM_X)
/** Performs channel shuffle when the data layout is NHWC. See https://arxiv.org/pdf/1707.01083.pdf for details.
*
* @note The vector size must be given as a preprocessor argument using -DVEC_SIZE=num. e.g. -DVEC_SIZE=4
* @note The third dimension of the tensor must be given as a preprocessor argument using -DSRC_DIM_Z=num. e.g. -DSRC_DIM_Z=64
* @note The first dimension of the tensor must be given as a preprocessor argument using -DSRC_DIM_X=num. e.g. -DSRC_DIM_X=64
* @note The number of groups must be given as a preprocessor argument using -DNUM_GROUPS=num_groups. e.g. -DNUM_GROUPS=2
* @note The number of channels in each group must be given as a preprocessor argument using -DK=num. e.g. -DK=1
* K is equal to num_channels / num_groups.
* @note The leftover size in the X dimension shoud be given as preprocessor argument using -DVEC_SIZE_LEFTOVER is; x_dimension % VEC_SIZE. e.g. -DVEC_SIZE_LEFTOVER=1
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: All
* @param[in] src_stride_x Stride of the first source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the first source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the first source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_stride_w Stride of the first source tensor in Z dimension (in bytes)
* @param[in] src_step_w src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the first source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_w Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_w output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void channel_shuffle_nhwc(TENSOR4D_DECLARATION(src),
TENSOR4D_DECLARATION(dst))
{
// Offset computation
const uint curr_out_channel = GET_SPATIAL_IDX(0, VEC_SIZE, VEC_SIZE_LEFTOVER); // output feature map
uint z = 0;
uint batch_id = 0;
// Compute curr_channel and batch_id
DIV_MOD_UINT(get_global_id(2), (uint)SRC_DIM_Z, batch_id, z);
VEC_DATA_TYPE(uint, VEC_SIZE)
curr_out_channels = (VEC_DATA_TYPE(uint, VEC_SIZE))(curr_out_channel) + VEC_OFFS(uint, VEC_SIZE);
VEC_DATA_TYPE(uint, VEC_SIZE)
in_channels = (curr_out_channels * (VEC_DATA_TYPE(uint, VEC_SIZE))(K)) % (VEC_DATA_TYPE(uint, VEC_SIZE))(SRC_DIM_X) + (curr_out_channels / (VEC_DATA_TYPE(uint, VEC_SIZE))(NUM_GROUPS));
// Load the values
const __global DATA_TYPE *input_ptr = (const __global DATA_TYPE *)(src_ptr + src_offset_first_element_in_bytes + get_global_id(1) * src_stride_y + z * src_stride_z + batch_id * src_stride_w);
#if VEC_SIZE == 1
DATA_TYPE out0 = *((const __global * DATA_TYPE)(input_ptr) + in_channels);
#elif VEC_SIZE == 2
VEC_DATA_TYPE(DATA_TYPE, 2)
out0 =
{
*(input_ptr + in_channels.s0),
*(input_ptr + in_channels.s1)
};
#elif VEC_SIZE == 3
VEC_DATA_TYPE(DATA_TYPE, 3)
out0 =
{
*(input_ptr + in_channels.s0),
*(input_ptr + in_channels.s1),
*(input_ptr + in_channels.s2)
};
#elif VEC_SIZE == 4
VEC_DATA_TYPE(DATA_TYPE, 4)
out0 =
{
*(input_ptr + in_channels.s0),
*(input_ptr + in_channels.s1),
*(input_ptr + in_channels.s2),
*(input_ptr + in_channels.s3)
};
#elif VEC_SIZE == 8
VEC_DATA_TYPE(DATA_TYPE, 8)
out0 =
{
*(input_ptr + in_channels.s0),
*(input_ptr + in_channels.s1),
*(input_ptr + in_channels.s2),
*(input_ptr + in_channels.s3),
*(input_ptr + in_channels.s4),
*(input_ptr + in_channels.s5),
*(input_ptr + in_channels.s6),
*(input_ptr + in_channels.s7)
};
#elif VEC_SIZE == 16
VEC_DATA_TYPE(DATA_TYPE, 16)
out0 =
{
*(input_ptr + in_channels.s0),
*(input_ptr + in_channels.s1),
*(input_ptr + in_channels.s2),
*(input_ptr + in_channels.s3),
*(input_ptr + in_channels.s4),
*(input_ptr + in_channels.s5),
*(input_ptr + in_channels.s6),
*(input_ptr + in_channels.s7),
*(input_ptr + in_channels.s8),
*(input_ptr + in_channels.s9),
*(input_ptr + in_channels.sa),
*(input_ptr + in_channels.sb),
*(input_ptr + in_channels.sc),
*(input_ptr + in_channels.sd),
*(input_ptr + in_channels.se),
*(input_ptr + in_channels.sf)
};
#endif // VEC_SIZE == 1
__global uchar *output_ptr = dst_ptr + curr_out_channel * sizeof(DATA_TYPE) + dst_offset_first_element_in_bytes + get_global_id(1) * dst_stride_y + z * dst_stride_z + batch_id * dst_stride_w;
STORE_VECTOR_SELECT(out, DATA_TYPE, output_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0);
}
#endif // defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_DIM_X)
#endif // defined(DATA_TYPE) && defined(VEC_SIZE) && defined(NUM_GROUPS) && defined(K) && defined(SRC_DIM_Z)