blob: 5b59ff508888b30a68ad6420a77c6019ace86e4b [file] [log] [blame]
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#include "repeat.h"
#include "tile_helpers.h"
#if defined(POOL_AVG) || defined(POOL_L2)
#define POOL_OP(x, y) ((x) + (y))
#else /* defined(POOL_AVG) || defined(POOL_L2) */
#define POOL_OP(x, y) (fmax((x), (y)))
#endif /* defined(POOL_AVG) || defined(POOL_L2) */
#if defined(POOL_L2)
#define POW2_OP(x, vec_size) ((x) * (x))
#else /* defined(POOL_L2) */
#define POW2_OP(x, vec_size) (x)
#endif /* defined(POOL_L2) */
#define DIV_OP(x, y) (x * (1.f / y))
#define SQRT_OP(x) sqrt((x))
#if defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(DST_CHANNELS) && defined(DST_HEIGHT) && defined(DST_BATCH_SIZE) && defined(ACC_DATA_TYPE)
#if defined(POOL_SIZE_X) && defined(POOL_SIZE_Y)
/** Performs pooling layer of size equal to MxN. This OpenCL kernel can perform the following pooling types:
* -# max, -DPOOL_MAX must be passed at compile time
* -# average, -DPOOL_AVG must be passed at compile time. If padding has to be expluded, -DEXCLUDE_PADDING should be passed at compile time
* -# l2 normalisation, -DPOOL_L2 must be passed at compile time
*
* @note Datatype must be passed at compile type using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F32/F16
* @note Accumulation data type must be passed at compile time using -DACC_DATA_TYPE e.g. -DACC_DATA_TYPE=float
* @note If -DFP_MIXED_PRECISION is passed at compile time, the kernel will use F32 for the partial result
* @note Pool size must be passed at compile time using -DPOOL_SIZE_X and -DPOOL_SIZE_Y. e.g. -DPOOL_SIZE_X=4, -DPOOL_SIZE_Y=4
* @note Input tensor width and height must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT
* @note Output tensor height, channels and batch size must be passed at compile time using -DDST_HEIGHT, -DDST_CHANNELS and -DDST_BATCH_SIZE
* @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
* @note Pool pads must be passed at compile time using -DPAD_X and -DPAD_Y
* @note Vector size must be passed at compile time using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
* @note Leftover vector size must be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
* @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0
*
* @param[in] input_ptr Pointer to the source tensor. Supported data types: F32/F16
* @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes)
* @param[in] input_step_w input_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr
* @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_stride_w Stride of the destination tensor in W dimension (in bytes)
* @param[in] output_step_w output_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void pooling_layer_MxN_nhwc(
TENSOR4D_DECLARATION(input),
TENSOR4D_DECLARATION(output))
{
// Note: If C is not multiple of VEC_SIZE, we shift back of VEC_SIZE_LEFTOVER elements to compute the leftover elements for get_global_id(0) == 0
// Note: If C is less than VEC_SIZE, VEC_SIZE should be SHRINKED to the closest smaller VEC_SIZE. This operation is performed on the host side
int idx_out_c = GET_SPATIAL_IDX(0, VEC_SIZE, VEC_SIZE_LEFTOVER);
int idx_out_w = GET_SPATIAL_IDX(1, 1, 0);
#if DST_BATCH_SIZE != 1
// If batch size != 1, the batch size dimension is collapsed over the height dimension
int idx_out_h = GET_SPATIAL_IDX(2, 1, 0) % DST_HEIGHT;
int idx_out_n = GET_SPATIAL_IDX(2, 1, 0) / DST_HEIGHT;
#else //DST_BATCH_SIZE != 1
int idx_out_h = GET_SPATIAL_IDX(2, 1, 0);
int idx_out_n = 0;
#endif // DST_BATCH_SIZE != 1
__global unsigned char *in_base_ptr = input_ptr + input_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_n * input_stride_w;
__global unsigned char *out_base_ptr = output_ptr + output_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_w * output_stride_y + idx_out_h * output_stride_z + idx_out_n *
output_stride_w;
VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
res0 = INITIAL_VALUE;
int idx_in_w = idx_out_w * STRIDE_X - PAD_X;
int idx_in_h = idx_out_h * STRIDE_Y - PAD_Y;
int pool_x_s = max((int)0, -idx_in_w);
int pool_x_e = min((int)POOL_SIZE_X, (int)SRC_WIDTH - idx_in_w);
int pool_y_s = max((int)0, -idx_in_h);
int pool_y_e = min((int)POOL_SIZE_Y, (int)SRC_HEIGHT - idx_in_h);
#if defined(EXCLUDE_PADDING)
int filter_size = (pool_y_e - pool_y_s) * (pool_x_e - pool_x_s);
#else // defined(EXCLUDE_PADDING)
int filter_size = POOL_SIZE_X * POOL_SIZE_Y;
#endif // defined(EXCLUDE_PADDING)
#if POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && PAD_X == 0 && PAD_Y == 0
// Global pooling path
for(int y = 0; y < POOL_SIZE_Y; ++y)
{
#pragma unroll 8
for(int x = 0; x < POOL_SIZE_X; ++x)
{
#else // POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && PAD_X == 0 && PAD_Y == 0
for(int y = pool_y_s; y < pool_y_e; ++y)
{
#pragma unroll 8
for(int x = pool_x_s; x < pool_x_e; ++x)
{
#endif // POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && PAD_X == 0 && PAD_Y == 0
VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
data0;
#if defined(FP_MIXED_PRECISION)
// In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE
data0 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + (x + idx_in_w) * input_stride_y + (y + idx_in_h) * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
#else // defined(FP_MIXED_PRECISION)
data0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + (x + idx_in_w) * input_stride_y + (y + idx_in_h) * input_stride_z));
#endif // defined(FP_MIXED_PRECISION)
#if defined(POOL_L2)
// Raise to power of 2 for L2 Pooling
data0 *= data0;
#endif // defined(POOL_L2)
res0 = POOL_OP(res0, data0);
}
}
#if defined(POOL_AVG) || defined(POOL_L2)
res0 /= (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))filter_size;
#endif // defined(POOL_AVG) || defined(POOL_L2)
#if defined(POOL_L2)
// Take square root of the result in L2 pooling
res0 = SQRT_OP(res0);
#endif // defined(POOL_L2)
// Store result
#if defined(FP_MIXED_PRECISION)
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
res_converted0 = CONVERT(res0, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE));
STORE_VECTOR_SELECT(res_converted, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
#else // defined(FP_MIXED_PRECISION)
STORE_VECTOR_SELECT(res, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
#endif // defined(FP_MIXED_PRECISION)
}
#endif // defined(POOL_SIZE_X) && defined(POOL_SIZE_Y)
#define SELECT_TYPE SELECT_VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
/** Performs pooling layer of size equal to 2. This OpenCL kernel can perform the following pooling types:
* -# max, -DPOOL_MAX must be passed at compile time
* -# max extracting the max index, -DPOOL_MAX and -DEXTRACT_MAX_INDEX must be passed at compile time
* -# average, -DPOOL_AVG must be passed at compile time. If padding has to be expluded, -DEXCLUDE_PADDING should be passed at compile time
* -# l2 normalisation, -DPOOL_L2 must be passed at compile time
*
* @note Datatype must be passed at compile type using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F32/F16
* @note Accumulation data type must be passed at compile time using -DACC_DATA_TYPE e.g. -DACC_DATA_TYPE=float
* @note If -DFP_MIXED_PRECISION is passed at compile time, the kernel will use F32 for the partial result
* @note Input tensor width and height must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT
* @note Output tensor height, channels and batch size must be passed at compile time using -DDST_HEIGHT, -DDST_CHANNELS and -DDST_BATCH_SIZE
* @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
* @note Pool pads must be passed at compile time using -DPAD_X and -DPAD_Y
* @note Vector size must be passed at compile time using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
* @note Leftover vector size must be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
* @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0
*
* @param[in] input_ptr Pointer to the source tensor. Supported data types: F32/F16
* @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes)
* @param[in] input_step_w input_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr
* @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_stride_w Stride of the destination tensor in W dimension (in bytes)
* @param[in] output_step_w output_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] indices_ptr (Optional) Pointer to the indices tensor. Supported data types: U32
* @param[in] indices_stride_x (Optional) Stride of the indices tensor in X dimension (in bytes)
* @param[in] indices_step_x (Optional) indices_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] indices_stride_y (Optional) Stride of the indices tensor in Y dimension (in bytes)
* @param[in] indices_step_y (Optional) indices_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] indices_stride_z (Optional) Stride of the indices tensor in Z dimension (in bytes)
* @param[in] indices_step_z (Optional) indices_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] indices_stride_w (Optional) Stride of the indices tensor in W dimension (in bytes)
* @param[in] indices_step_w (Optional) indices_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] indices_offset_first_element_in_bytes (Optional) The offset of the first element in the indices tensor
*/
__kernel void pooling_layer_2x2_nhwc(
TENSOR4D_DECLARATION(input),
TENSOR4D_DECLARATION(output)
#if defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX)
,
TENSOR4D_DECLARATION(indices)
#endif // defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX)
)
{
// Note: If C is not multiple of VEC_SIZE, we shift back of VEC_SIZE_LEFTOVER elements to compute the leftover elements for get_global_id(0) == 0
// Note: If C is less than VEC_SIZE, VEC_SIZE should be SHRINKED to the closest smaller VEC_SIZE. This operation is performed on the host side
int idx_out_c = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
int idx_out_w = get_global_id(1);
#if DST_BATCH_SIZE != 1
// If batch size != 1, the batch size dimension is collapsed over the height dimension
int idx_out_h = get_global_id(2) % DST_HEIGHT;
int idx_out_n = get_global_id(2) / DST_HEIGHT;
#else //SRC_BATCH_SIZE != 1
int idx_out_h = get_global_id(2);
int idx_out_n = 0;
#endif // SRC_BATCH_SIZE != 1
int idx_in_w = idx_out_w * STRIDE_X - PAD_X;
int idx_in_h = idx_out_h * STRIDE_Y - PAD_Y;
__global unsigned char *in_base_ptr = input_ptr + input_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_n * input_stride_w;
__global unsigned char *out_base_ptr = output_ptr + output_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_w * output_stride_y + idx_out_h * output_stride_z + idx_out_n *
output_stride_w;
int pool_x_s = max((int)0, -idx_in_w);
int pool_x_e = min((int)2, (int)SRC_WIDTH - idx_in_w);
int pool_y_s = max((int)0, -idx_in_h);
int pool_y_e = min((int)2, (int)SRC_HEIGHT - idx_in_h);
int filter_size = (pool_x_e - pool_x_s) * (pool_y_e - pool_y_s);
int x0 = pool_x_s + idx_in_w;
int y0 = pool_y_s + idx_in_h;
int x1 = pool_x_e - 1 + idx_in_w;
int y1 = pool_y_e - 1 + idx_in_h;
REPEAT_VAR_INIT_TO_CONST(4, VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE), data, 0);
#if defined(FP_MIXED_PRECISION)
// In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE
data0 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y0 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
data1 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y0 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
data2 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y1 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
data3 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y1 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
#else // defined(FP_MIXED_PRECISION)
data0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y0 * input_stride_z));
data1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y0 * input_stride_z));
data2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y1 * input_stride_z));
data3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y1 * input_stride_z));
#endif // defined(FP_MIXED_PRECISION)
#if !defined(POOL_MAX)
if(filter_size != 4)
{
SELECT_TYPE cond_w_s = (SELECT_TYPE)idx_in_w < (SELECT_TYPE)0;
SELECT_TYPE cond_w_e = (SELECT_TYPE)idx_in_w >= (SELECT_TYPE)(SRC_WIDTH - 1);
SELECT_TYPE cond_h_s = (SELECT_TYPE)idx_in_h < (SELECT_TYPE)0;
SELECT_TYPE cond_h_e = (SELECT_TYPE)idx_in_h >= (SELECT_TYPE)(SRC_HEIGHT - 1);
// Make invalid the values loaded if the x or y coordinate was clamped (out-of-bound)
data0 = select(data0, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_s | cond_h_s));
data1 = select(data1, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_e | cond_h_s));
data2 = select(data2, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_s | cond_h_e));
data3 = select(data3, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_e | cond_h_e));
}
#endif // !defined(POOL_MAX)
#if defined(POOL_L2)
// Raise to power of 2 for L2 Pooling
data0 *= data0;
data1 *= data1;
data2 *= data2;
data3 *= data3;
#endif /* defined(POOL_L2) */
VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
res0 = data0;
res0 = POOL_OP(res0, data1);
res0 = POOL_OP(res0, data2);
res0 = POOL_OP(res0, data3);
#if defined(POOL_AVG) || defined(POOL_L2)
#if defined(EXCLUDE_PADDING)
res0 /= (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))filter_size;
#else // !defined(EXCLUDE_PADDING)
res0 /= (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))4;
#endif // defined(EXCLUDE_PADDING)
#endif // defined(POOL_AVG) || defined(POOL_L2)
#if defined(POOL_L2)
// Take square root of the result in L2 pooling
res0 = SQRT_OP(res0);
#endif // defined(POOL_L2)
// Store result
#if defined(FP_MIXED_PRECISION)
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
res_converted0 = CONVERT(res0, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE));
STORE_VECTOR_SELECT(res_converted, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
#else // defined(FP_MIXED_PRECISION)
STORE_VECTOR_SELECT(res, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
#endif // defined(FP_MIXED_PRECISION)
#if defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX)
// This part is used to return the index of the maximum value
// Note: DST_CHANNELS and DST_BATCH_SIZE can be used for either the input and output tensor
// note: Batch dimension does not contribute in the offset contribution
VEC_DATA_TYPE(uint, VEC_SIZE)
base_index = (uint)idx_out_c;
base_index += VEC_OFFS(uint, VEC_SIZE);
VEC_DATA_TYPE(uint, VEC_SIZE)
index0 = base_index + (uint)x0 * DST_CHANNELS + (uint)y0 * (DST_CHANNELS * SRC_WIDTH);
VEC_DATA_TYPE(uint, VEC_SIZE)
index1 = base_index + (uint)x1 * DST_CHANNELS + (uint)y0 * (DST_CHANNELS * SRC_WIDTH);
VEC_DATA_TYPE(uint, VEC_SIZE)
index2 = base_index + (uint)x0 * DST_CHANNELS + (uint)y1 * (DST_CHANNELS * SRC_WIDTH);
VEC_DATA_TYPE(uint, VEC_SIZE)
index3 = base_index + (uint)x1 * DST_CHANNELS + (uint)y1 * (DST_CHANNELS * SRC_WIDTH);
index0 = select(index1, index0, CONVERT(isgreaterequal(data0, data1), VEC_DATA_TYPE(int, VEC_SIZE)));
index1 = select(index3, index2, CONVERT(isgreaterequal(data2, data3), VEC_DATA_TYPE(int, VEC_SIZE)));
index0 = select(index1, index0, CONVERT(isgreaterequal(max(data0, data1), max(data2, data3)), VEC_DATA_TYPE(int, VEC_SIZE)));
__global unsigned char *idx_base_ptr = indices_ptr + indices_offset_first_element_in_bytes + idx_out_c * sizeof(uint) + idx_out_w * indices_stride_y + idx_out_h * indices_stride_z + idx_out_n *
indices_stride_w;
// Store result
STORE_VECTOR_SELECT(index, uint, idx_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, ((VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0));
#endif // defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX)
}
#endif // defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(DST_CHANNELS) && defined(DST_HEIGHT) && defined(DST_BATCH_SIZE) && defined(ACC_DATA_TYPE)