blob: 9616f4faca45264cbe1f8bb1945283b675811c79 [file] [log] [blame]
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEActivationLayerKernel.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Window.h"
#include "src/core/CPP/Validate.h"
#include "src/core/NEON/NEAsymm.h"
#include "src/core/NEON/NESymm.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include <arm_neon.h>
#include <set>
namespace arm_compute
{
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const ActivationLayerInfo &activation_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8_SIGNED, DataType::QASYMM8, DataType::QSYMM16, DataType::F16, DataType::F32);
const static std::set<ActivationLayerInfo::ActivationFunction> qasymm8_supported_activations =
{
ActivationLayerInfo::ActivationFunction::RELU,
ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU,
ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
ActivationLayerInfo::ActivationFunction::LOGISTIC,
ActivationLayerInfo::ActivationFunction::TANH,
ActivationLayerInfo::ActivationFunction::HARD_SWISH
};
const static std::set<ActivationLayerInfo::ActivationFunction> qsymm16_supported_activations =
{
ActivationLayerInfo::ActivationFunction::LOGISTIC,
ActivationLayerInfo::ActivationFunction::TANH,
ActivationLayerInfo::ActivationFunction::HARD_SWISH
};
const DataType data_type = input->data_type();
const QuantizationInfo &oq_info = (output != nullptr) ? output->quantization_info() : input->quantization_info();
const ActivationLayerInfo::ActivationFunction f_act = activation_info.activation();
ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_data_type_quantized_asymmetric(data_type) && (qasymm8_supported_activations.count(f_act) == 0),
"For QASYMM8 only tanh, logistic, relu and lower/upper bounded relu are supported");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_data_type_quantized_symmetric(data_type) && (qsymm16_supported_activations.count(f_act) == 0),
"For QSYMM16 only tanh and logistic are supported");
ARM_COMPUTE_RETURN_ERROR_ON((data_type == DataType::QASYMM8 || data_type == DataType::QASYMM16) && (f_act == ActivationLayerInfo::ActivationFunction::TANH)
&& (oq_info != QuantizationInfo(1.f / 128.f, 128)));
ARM_COMPUTE_RETURN_ERROR_ON((data_type == DataType::QASYMM8 || data_type == DataType::QASYMM16) && (f_act == ActivationLayerInfo::ActivationFunction::LOGISTIC)
&& (oq_info != QuantizationInfo(1.f / 256.f, 0)));
ARM_COMPUTE_RETURN_ERROR_ON(data_type == DataType::QASYMM8_SIGNED && (f_act == ActivationLayerInfo::ActivationFunction::TANH) && (oq_info != QuantizationInfo(1.f / 128.f, 0)));
ARM_COMPUTE_RETURN_ERROR_ON(data_type == DataType::QASYMM8_SIGNED && (f_act == ActivationLayerInfo::ActivationFunction::LOGISTIC) && (oq_info != QuantizationInfo(1.f / 256.f, -128)));
ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_symmetric(data_type) && (f_act == ActivationLayerInfo::ActivationFunction::TANH) && (oq_info != QuantizationInfo(1.f / 32768.f, 0)));
ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_symmetric(data_type) && (f_act == ActivationLayerInfo::ActivationFunction::LOGISTIC) && (oq_info != QuantizationInfo(1.f / 32768.f, 0)));
// Checks performed when output is configured
if((output != nullptr) && (output->total_size() != 0))
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(const ITensorInfo *input, ITensorInfo *output)
{
// Configure kernel window
Window win = calculate_max_window(*input, Steps());
if(output != nullptr)
{
// Output auto inizialitation if not yet initialized
auto_init_if_empty(*output, *input->clone());
// NEActivationLayerKernel doesn't need padding so update_window_and_padding() can be skipped
Coordinates coord;
coord.set_num_dimensions(output->num_dimensions());
output->set_valid_region(ValidRegion(coord, output->tensor_shape()));
}
return std::make_pair(Status{}, win);
}
#ifndef __aarch64__
inline float32x4_t mask_float_vector(const float32x4_t &in, const uint32x4_t &mask)
{
auto int_in = vreinterpretq_u32_f32(in);
return vreinterpretq_f32_u32(wrapper::vand(int_in, mask));
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
inline float16x8_t mask_float_vector(const float16x8_t &in, const uint16x8_t &mask)
{
auto int_in = vreinterpretq_u16_f16(in);
return vreinterpretq_f16_u16(wrapper::vand(int_in, mask));
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
#endif /* __arch64__ */
} // namespace
NEActivationLayerKernel::NEActivationLayerKernel()
: _func(nullptr), _act_info()
{
}
void NEActivationLayerKernel::configure(const ITensorInfo *input, ITensorInfo *output, ActivationLayerInfo activation_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
_act_info = activation_info;
// Disabled activation, thus no operation needed
if(!activation_info.enabled())
{
_func = nullptr;
}
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input, output, activation_info));
// Activation functions : FP32
static std::map<ActivationFunction, ActivationFunctionExecutorPtr> act_map_f32 =
{
{ ActivationFunction::ABS, &NEActivationLayerKernel::activation<ActivationFunction::ABS, float> },
{ ActivationFunction::LINEAR, &NEActivationLayerKernel::activation<ActivationFunction::LINEAR, float> },
{ ActivationFunction::LOGISTIC, &NEActivationLayerKernel::activation<ActivationFunction::LOGISTIC, float> },
{ ActivationFunction::RELU, &NEActivationLayerKernel::activation<ActivationFunction::RELU, float> },
{ ActivationFunction::BOUNDED_RELU, &NEActivationLayerKernel::activation<ActivationFunction::BOUNDED_RELU, float> },
{ ActivationFunction::LU_BOUNDED_RELU, &NEActivationLayerKernel::activation<ActivationFunction::LU_BOUNDED_RELU, float> },
{ ActivationFunction::LEAKY_RELU, &NEActivationLayerKernel::activation<ActivationFunction::LEAKY_RELU, float> },
{ ActivationFunction::SOFT_RELU, &NEActivationLayerKernel::activation<ActivationFunction::SOFT_RELU, float> },
{ ActivationFunction::ELU, &NEActivationLayerKernel::activation<ActivationFunction::ELU, float> },
{ ActivationFunction::SQRT, &NEActivationLayerKernel::activation<ActivationFunction::SQRT, float> },
{ ActivationFunction::SQUARE, &NEActivationLayerKernel::activation<ActivationFunction::SQUARE, float> },
{ ActivationFunction::TANH, &NEActivationLayerKernel::activation<ActivationFunction::TANH, float> },
{ ActivationFunction::IDENTITY, &NEActivationLayerKernel::activation<ActivationFunction::IDENTITY, float> },
{ ActivationFunction::HARD_SWISH, &NEActivationLayerKernel::activation<ActivationFunction::HARD_SWISH, float> },
};
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
// Activation functions : FP16
static std::map<ActivationFunction, ActivationFunctionExecutorPtr> act_map_f16 =
{
{ ActivationFunction::ABS, &NEActivationLayerKernel::activation<ActivationFunction::ABS, float16_t> },
{ ActivationFunction::LINEAR, &NEActivationLayerKernel::activation<ActivationFunction::LINEAR, float16_t> },
{ ActivationFunction::LOGISTIC, &NEActivationLayerKernel::activation<ActivationFunction::LOGISTIC, float16_t> },
{ ActivationFunction::RELU, &NEActivationLayerKernel::activation<ActivationFunction::RELU, float16_t> },
{ ActivationFunction::BOUNDED_RELU, &NEActivationLayerKernel::activation<ActivationFunction::BOUNDED_RELU, float16_t> },
{ ActivationFunction::LU_BOUNDED_RELU, &NEActivationLayerKernel::activation<ActivationFunction::LU_BOUNDED_RELU, float16_t> },
{ ActivationFunction::LEAKY_RELU, &NEActivationLayerKernel::activation<ActivationFunction::LEAKY_RELU, float16_t> },
{ ActivationFunction::SOFT_RELU, &NEActivationLayerKernel::activation<ActivationFunction::SOFT_RELU, float16_t> },
{ ActivationFunction::ELU, &NEActivationLayerKernel::activation<ActivationFunction::ELU, float16_t> },
{ ActivationFunction::SQRT, &NEActivationLayerKernel::activation<ActivationFunction::SQRT, float16_t> },
{ ActivationFunction::SQUARE, &NEActivationLayerKernel::activation<ActivationFunction::SQUARE, float16_t> },
{ ActivationFunction::TANH, &NEActivationLayerKernel::activation<ActivationFunction::TANH, float16_t> },
{ ActivationFunction::IDENTITY, &NEActivationLayerKernel::activation<ActivationFunction::IDENTITY, float16_t> },
{ ActivationFunction::HARD_SWISH, &NEActivationLayerKernel::activation<ActivationFunction::HARD_SWISH, float16_t> },
};
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC*/
// Activation functions : QASYMM8_SIGNED
static std::map<ActivationFunction, ActivationFunctionExecutorPtr> act_map_qasymm8_signed =
{
{ ActivationFunction::LOGISTIC, &NEActivationLayerKernel::activation<ActivationFunction::LOGISTIC, qasymm8_signed_t> },
{ ActivationFunction::BOUNDED_RELU, &NEActivationLayerKernel::activation<ActivationFunction::BOUNDED_RELU, qasymm8_signed_t> },
{ ActivationFunction::LU_BOUNDED_RELU, &NEActivationLayerKernel::activation<ActivationFunction::LU_BOUNDED_RELU, qasymm8_signed_t> },
{ ActivationFunction::RELU, &NEActivationLayerKernel::activation<ActivationFunction::RELU, qasymm8_signed_t> },
{ ActivationFunction::TANH, &NEActivationLayerKernel::activation<ActivationFunction::TANH, qasymm8_signed_t> },
{ ActivationFunction::IDENTITY, &NEActivationLayerKernel::activation<ActivationFunction::IDENTITY, qasymm8_signed_t> },
{ ActivationFunction::HARD_SWISH, &NEActivationLayerKernel::activation<ActivationFunction::HARD_SWISH, qasymm8_signed_t> },
};
// Activation functions : QASYMM8
static std::map<ActivationFunction, ActivationFunctionExecutorPtr> act_map_qasymm8 =
{
{ ActivationFunction::LOGISTIC, &NEActivationLayerKernel::activation<ActivationFunction::LOGISTIC, qasymm8_t> },
{ ActivationFunction::BOUNDED_RELU, &NEActivationLayerKernel::activation<ActivationFunction::BOUNDED_RELU, qasymm8_t> },
{ ActivationFunction::LU_BOUNDED_RELU, &NEActivationLayerKernel::activation<ActivationFunction::LU_BOUNDED_RELU, qasymm8_t> },
{ ActivationFunction::RELU, &NEActivationLayerKernel::activation<ActivationFunction::RELU, qasymm8_t> },
{ ActivationFunction::TANH, &NEActivationLayerKernel::activation<ActivationFunction::TANH, qasymm8_t> },
{ ActivationFunction::IDENTITY, &NEActivationLayerKernel::activation<ActivationFunction::IDENTITY, qasymm8_t> },
{ ActivationFunction::HARD_SWISH, &NEActivationLayerKernel::activation<ActivationFunction::HARD_SWISH, qasymm8_t> },
};
// Activation functions : QSYMM16
static std::map<ActivationFunction, ActivationFunctionExecutorPtr> act_map_qsymm16 =
{
{ ActivationFunction::LOGISTIC, &NEActivationLayerKernel::activation<ActivationFunction::LOGISTIC, qsymm16_t> },
{ ActivationFunction::TANH, &NEActivationLayerKernel::activation<ActivationFunction::TANH, qsymm16_t> },
};
switch(input->data_type())
{
case DataType::QASYMM8_SIGNED:
_func = act_map_qasymm8_signed[activation_info.activation()];
break;
case DataType::QASYMM8:
_func = act_map_qasymm8[activation_info.activation()];
break;
case DataType::QSYMM16:
_func = act_map_qsymm16[activation_info.activation()];
break;
case DataType::F32:
_func = act_map_f32[activation_info.activation()];
break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
_func = act_map_f16[activation_info.activation()];
break;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
default:
ARM_COMPUTE_ERROR("Unsupported data type.");
}
// Configure kernel window
auto win_config = validate_and_configure_window(input, output);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICPPKernel::configure(win_config.second);
}
template <ActivationLayerInfo::ActivationFunction F, typename T>
typename std::enable_if<arm_compute::utils::traits::is_floating_point<T>::value, void>::type
NEActivationLayerKernel::activation(const ITensor *src, ITensor *dst, const Window &window)
{
/** NEON vector tag type. */
using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
const int window_step_x = 16 / sizeof(T);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const ActivationFunction act = F;
Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input(src, win_collapsed);
Iterator output(dst, win_collapsed);
// In case of non-aarch64, a small delta value is added to the input
// to prevent NAN values caused by zeros in inputs to SQRT.
// In case of aarh64, we call vsqrt directly, so we don't use delta.
#ifndef __aarch64__
const auto delta = wrapper::vdup_n(static_cast<T>((src->info()->data_type() == DataType::F32 ? 1e-24 : 1e-7)), ExactTagType {});
#endif /* __aarch64 */
const auto const_1 = wrapper::vdup_n(static_cast<T>(1.f), ExactTagType {});
const auto const_0 = wrapper::vdup_n(static_cast<T>(0.f), ExactTagType{});
const auto const_6 = wrapper::vdup_n(static_cast<T>(6.f), ExactTagType{});
const auto const_3 = wrapper::vdup_n(static_cast<T>(3.f), ExactTagType{});
const auto const_inv_6 = wrapper::vdup_n(static_cast<T>(0.166666667f), ExactTagType{});
const auto va = wrapper::vdup_n(static_cast<T>(_act_info.a()), ExactTagType{});
const auto vb = wrapper::vdup_n(static_cast<T>(_act_info.b()), ExactTagType{});
const auto a = static_cast<T>(_act_info.a());
const auto b = static_cast<T>(_act_info.b());
execute_window_loop(win_collapsed, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const T *>(input.ptr());
const auto output_ptr = reinterpret_cast<T *>(output.ptr());
wrapper::traits::neon_bitvector_t<T, wrapper::traits::BitWidth::W128> tmp;
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto vin = wrapper::vloadq(input_ptr + x);
switch(act)
{
case ActivationFunction::ABS:
tmp = wrapper::vabs(vin);
break;
case ActivationFunction::LINEAR:
tmp = wrapper::vmla(vb, va, vin);
break;
case ActivationFunction::LOGISTIC:
tmp = wrapper::vinv(wrapper::vadd(const_1, wrapper::vexpq(wrapper::vneg(vin))));
break;
case ActivationFunction::RELU:
tmp = wrapper::vmax(const_0, vin);
break;
case ActivationFunction::BOUNDED_RELU:
tmp = wrapper::vmin(va, wrapper::vmax(const_0, vin));
break;
case ActivationFunction::LU_BOUNDED_RELU:
tmp = wrapper::vmin(va, wrapper::vmax(vb, vin));
break;
case ActivationFunction::LEAKY_RELU:
tmp = wrapper::vbsl(wrapper::vcgt(vin, const_0), vin, wrapper::vmul(va, vin));
break;
case ActivationFunction::SOFT_RELU:
tmp = wrapper::vlog(wrapper::vadd(const_1, wrapper::vexpq(vin)));
break;
case ActivationFunction::ELU:
tmp = wrapper::vbsl(wrapper::vcge(vin, const_0), vin, wrapper::vmul(va, wrapper::vsub(wrapper::vexpq(vin), const_1)));
break;
case ActivationFunction::SQRT:
#ifdef __aarch64__
tmp = wrapper::vsqrt(vin);
#else /* aarch64 */
{
const auto bitmask = wrapper::vceq(vin, wrapper::vdup_n(T(0), ExactTagType{}));
tmp = wrapper::vinv(wrapper::vinvsqrt(wrapper::vadd(vin, mask_float_vector(delta, bitmask))));
tmp = mask_float_vector(tmp, wrapper::vnot(bitmask));
}
#endif /* aarch64 */
break;
case ActivationFunction::SQUARE:
tmp = wrapper::vmul(vin, vin);
break;
case ActivationFunction::TANH:
tmp = wrapper::vmul(va, wrapper::vtanh(wrapper::vmul(vb, vin)));
break;
case ActivationFunction::IDENTITY:
tmp = vin;
break;
case ActivationFunction::HARD_SWISH:
tmp = wrapper::vmul(vin, wrapper::vmul(const_inv_6, wrapper::vmin(const_6, wrapper::vmax(const_0, wrapper::vadd(vin, const_3)))));
break;
default:
ARM_COMPUTE_ERROR("Unsupported activation function");
}
wrapper::vstore(output_ptr + x, tmp);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
const T in = *(reinterpret_cast<const T *>(input_ptr + x));
T tmp;
switch(act)
{
case ActivationFunction::ABS:
tmp = std::abs(in);
break;
case ActivationFunction::LINEAR:
tmp = a * in + b;
break;
case ActivationFunction::LOGISTIC:
tmp = static_cast<T>(1) / (static_cast<T>(1) + std::exp(-in));
break;
case ActivationFunction::RELU:
tmp = std::max<T>(static_cast<T>(0), in);
break;
case ActivationFunction::BOUNDED_RELU:
tmp = std::min<T>(a, std::max(static_cast<T>(0), in));
break;
case ActivationFunction::LU_BOUNDED_RELU:
tmp = std::min<T>(a, std::max<T>(b, in));
break;
case ActivationFunction::LEAKY_RELU:
tmp = (in > 0) ? in : a * in;
break;
case ActivationFunction::SOFT_RELU:
tmp = std::log(static_cast<T>(1) + std::exp(in));
break;
case ActivationFunction::ELU:
tmp = (in >= 0) ? in : a * (std::exp(in) - 1);
break;
case ActivationFunction::SQRT:
tmp = std::sqrt(in);
break;
case ActivationFunction::SQUARE:
tmp = in * in;
break;
case ActivationFunction::TANH:
tmp = a * std::tanh(b * in);
break;
case ActivationFunction::IDENTITY:
tmp = in;
break;
case ActivationFunction::HARD_SWISH:
tmp = in * ((std::min(std::max((in + 3), 0.0f), 6.0f)) * 0.166666667f);
break;
default:
ARM_COMPUTE_ERROR("Unsupported activation function");
}
*(output_ptr + x) = tmp;
}
},
input, output);
}
template <ActivationLayerInfo::ActivationFunction F, typename T>
typename std::enable_if<std::is_same<T, qasymm8_t>::value, void>::type NEActivationLayerKernel::activation(const ITensor *src, ITensor *dst, const Window &window)
{
const int window_step_x = 16 / sizeof(T);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const ActivationFunction act = F;
Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input(src, win_collapsed);
Iterator output(dst, win_collapsed);
const UniformQuantizationInfo qi_in = src->info()->quantization_info().uniform();
const UniformQuantizationInfo qi_out = dst->info()->quantization_info().uniform();
const qasymm8x16_t va = vdupq_n_u8(quantize_qasymm8(_act_info.a(), qi_in));
const qasymm8x16_t vb = vdupq_n_u8(quantize_qasymm8(_act_info.b(), qi_in));
const qasymm8_t a = quantize_qasymm8(_act_info.a(), qi_in);
const qasymm8_t b = quantize_qasymm8(_act_info.b(), qi_in);
const qasymm8_t const_0 = quantize_qasymm8(0.f, qi_in);
const qasymm8x16_t vconst_0 = vdupq_n_u8(const_0);
const auto vconst_1 = vdupq_n_f32(1.f);
const float32x4_t va_f32 = vdupq_n_f32(_act_info.a());
const float32x4_t vb_f32 = vdupq_n_f32(_act_info.b());
const float a_f32 = _act_info.a();
const float b_f32 = _act_info.b();
const auto const_6_f32 = vdupq_n_f32(6.f);
const auto const_0_f32 = vdupq_n_f32(0.f);
const auto const_3_f32 = vdupq_n_f32(3.f);
const auto const_inv_6_f32 = vdupq_n_f32(0.166666667f);
// Initialise scale/offset for re-quantization
float s = qi_in.scale / qi_out.scale;
float o = -qi_in.offset * s + qi_out.offset;
float32x4_t vs = vdupq_n_f32(s);
float32x4_t vo = vdupq_n_f32(o);
execute_window_loop(win_collapsed, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const T *>(input.ptr());
const auto output_ptr = reinterpret_cast<T *>(output.ptr());
wrapper::traits::neon_bitvector_t<T, wrapper::traits::BitWidth::W128> tmp;
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto vin = wrapper::vloadq(input_ptr + x);
if(act == ActivationFunction::RELU)
{
// Perform activation
tmp = vmaxq_u8(vconst_0, vin);
// Re-quantize to new output space
tmp = vmlaq_qasymm8(tmp, vs, vo);
}
else if(act == ActivationFunction::BOUNDED_RELU)
{
// Perform activation
tmp = vminq_u8(va, vmaxq_u8(vconst_0, vin));
// Re-quantize to new output space
tmp = vmlaq_qasymm8(tmp, vs, vo);
}
else if(act == ActivationFunction::LU_BOUNDED_RELU)
{
// Perform activation
tmp = vminq_u8(va, vmaxq_u8(vb, vin));
// Re-quantize to new output space
tmp = vmlaq_qasymm8(tmp, vs, vo);
}
else if(act == ActivationFunction::LOGISTIC)
{
// De-quantize
const auto vin_deq = vdequantize(vin, qi_in);
// Perform activation
const float32x4x4_t tmp_dep =
{
{
wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[0])))),
wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[1])))),
wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[2])))),
wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[3])))),
}
};
// Re-quantize to new output space
tmp = vquantize(tmp_dep, qi_out);
}
else if(act == ActivationFunction::TANH)
{
// De-quantize
const auto vin_deq = vdequantize(vin, qi_in);
// Perform activation
const float32x4x4_t tmp_dep =
{
{
wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[0], vb_f32))),
wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[1], vb_f32))),
wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[2], vb_f32))),
wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[3], vb_f32))),
}
};
// Re-quantize to new output space
tmp = vquantize(tmp_dep, qi_out);
}
else if(act == ActivationFunction::HARD_SWISH)
{
// De-quantize
const auto vin_deq = vdequantize(vin, qi_in);
// Perform activation
const float32x4x4_t tmp_dep =
{
{
wrapper::vmul(vin_deq.val[0], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[0], const_3_f32))))),
wrapper::vmul(vin_deq.val[1], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[1], const_3_f32))))),
wrapper::vmul(vin_deq.val[2], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[2], const_3_f32))))),
wrapper::vmul(vin_deq.val[3], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[3], const_3_f32))))),
}
};
// Re-quantize to new output space
tmp = vquantize(tmp_dep, qi_out);
}
else
{
ARM_COMPUTE_ERROR("Unsupported activation function");
}
wrapper::vstore(output_ptr + x, tmp);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
T in = *(reinterpret_cast<const T *>(input_ptr + x));
T tmp;
if(act == ActivationFunction::RELU)
{
tmp = std::max(const_0, in);
tmp = utility::clamp<int32_t, qasymm8_t>(tmp * s + o);
}
else if(act == ActivationFunction::BOUNDED_RELU)
{
tmp = std::min(a, std::max(const_0, in));
tmp = utility::clamp<int32_t, qasymm8_t>(tmp * s + o);
}
else if(act == ActivationFunction::LU_BOUNDED_RELU)
{
tmp = std::min(a, std::max(b, in));
tmp = utility::clamp<int32_t, qasymm8_t>(tmp * s + o);
}
else if(act == ActivationFunction::LOGISTIC)
{
float tmp_f = dequantize_qasymm8(in, qi_in);
tmp_f = 1.f / (1.f + std::exp(-tmp_f));
tmp = quantize_qasymm8(tmp_f, qi_out);
}
else if(act == ActivationFunction::TANH)
{
float tmp_f = dequantize_qasymm8(in, qi_in);
tmp_f = a_f32 * std::tanh(b_f32 * tmp_f);
tmp = quantize_qasymm8(tmp_f, qi_out);
}
else if(act == ActivationFunction::HARD_SWISH)
{
float tmp_f = dequantize_qasymm8(in, qi_in);
tmp_f = tmp_f * ((std::min(std::max((tmp_f + 3), 0.0f), 6.0f)) * 0.166666667f);
tmp = quantize_qasymm8(tmp_f, qi_out);
}
else
{
ARM_COMPUTE_ERROR("Unsupported activation function");
}
*(output_ptr + x) = tmp;
}
},
input, output);
}
template <ActivationLayerInfo::ActivationFunction F, typename T>
typename std::enable_if<std::is_same<T, qasymm8_signed_t>::value, void>::type NEActivationLayerKernel::activation(const ITensor *src, ITensor *dst, const Window &window)
{
const int window_step_x = 16 / sizeof(T);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const ActivationFunction act = F;
Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input(src, win_collapsed);
Iterator output(dst, win_collapsed);
const UniformQuantizationInfo qi_in = src->info()->quantization_info().uniform();
const UniformQuantizationInfo qi_out = dst->info()->quantization_info().uniform();
const qasymm8x16_signed_t va = vdupq_n_s8(quantize_qasymm8_signed(_act_info.a(), qi_in));
const qasymm8x16_signed_t vb = vdupq_n_s8(quantize_qasymm8_signed(_act_info.b(), qi_in));
const qasymm8_signed_t a = quantize_qasymm8_signed(_act_info.a(), qi_in);
const qasymm8_signed_t b = quantize_qasymm8_signed(_act_info.b(), qi_in);
const qasymm8_signed_t const_0 = quantize_qasymm8_signed(0.f, qi_in);
const qasymm8x16_signed_t vconst_0 = vdupq_n_s8(const_0);
const auto vconst_1 = vdupq_n_f32(1.f);
const float32x4_t va_f32 = vdupq_n_f32(_act_info.a());
const float32x4_t vb_f32 = vdupq_n_f32(_act_info.b());
const float a_f32 = _act_info.a();
const float b_f32 = _act_info.b();
const auto const_6_f32 = vdupq_n_f32(6.f);
const auto const_0_f32 = vdupq_n_f32(0.f);
const auto const_3_f32 = vdupq_n_f32(3.f);
const auto const_inv_6_f32 = vdupq_n_f32(0.166666667f);
// Initialise scale/offset for re-quantization
float s = qi_in.scale / qi_out.scale;
float o = -qi_in.offset * s + qi_out.offset;
float32x4_t vs = vdupq_n_f32(s);
float32x4_t vo = vdupq_n_f32(o);
execute_window_loop(win_collapsed, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const T *>(input.ptr());
const auto output_ptr = reinterpret_cast<T *>(output.ptr());
wrapper::traits::neon_bitvector_t<T, wrapper::traits::BitWidth::W128> tmp;
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto vin = wrapper::vloadq(input_ptr + x);
if(act == ActivationFunction::RELU)
{
// Perform activation
tmp = vmaxq_s8(vconst_0, vin);
// Re-quantize to new output space
tmp = vmlaq_qasymm8_signed(tmp, vs, vo);
}
else if(act == ActivationFunction::BOUNDED_RELU)
{
// Perform activation
tmp = vminq_s8(va, vmaxq_s8(vconst_0, vin));
// Re-quantize to new output space
tmp = vmlaq_qasymm8_signed(tmp, vs, vo);
}
else if(act == ActivationFunction::LU_BOUNDED_RELU)
{
// Perform activation
tmp = vminq_s8(va, vmaxq_s8(vb, vin));
// Re-quantize to new output space
tmp = vmlaq_qasymm8_signed(tmp, vs, vo);
}
else if(act == ActivationFunction::LOGISTIC)
{
// De-quantize
const auto vin_deq = vdequantize(vin, qi_in);
// Perform activation
const float32x4x4_t tmp_dep =
{
{
wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[0])))),
wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[1])))),
wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[2])))),
wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[3])))),
}
};
// Re-quantize to new output space
tmp = vquantize_signed(tmp_dep, qi_out);
}
else if(act == ActivationFunction::TANH)
{
// De-quantize
const auto vin_deq = vdequantize(vin, qi_in);
// Perform activation
const float32x4x4_t tmp_dep =
{
{
wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[0], vb_f32))),
wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[1], vb_f32))),
wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[2], vb_f32))),
wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[3], vb_f32))),
}
};
// Re-quantize to new output space
tmp = vquantize_signed(tmp_dep, qi_out);
}
else if(act == ActivationFunction::HARD_SWISH)
{
// De-quantize
const auto vin_deq = vdequantize(vin, qi_in);
// Perform activation
const float32x4x4_t tmp_dep =
{
{
wrapper::vmul(vin_deq.val[0], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[0], const_3_f32))))),
wrapper::vmul(vin_deq.val[1], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[1], const_3_f32))))),
wrapper::vmul(vin_deq.val[2], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[2], const_3_f32))))),
wrapper::vmul(vin_deq.val[3], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[3], const_3_f32))))),
}
};
// Re-quantize to new output space
tmp = vquantize_signed(tmp_dep, qi_out);
}
else
{
ARM_COMPUTE_ERROR("Unsupported activation function");
}
wrapper::vstore(output_ptr + x, tmp);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
T in = *(reinterpret_cast<const T *>(input_ptr + x));
T tmp;
if(act == ActivationFunction::RELU)
{
tmp = std::max(const_0, in);
tmp = utility::clamp<int32_t, qasymm8_signed_t>(tmp * s + o);
}
else if(act == ActivationFunction::BOUNDED_RELU)
{
tmp = std::min(a, std::max(const_0, in));
tmp = utility::clamp<int32_t, qasymm8_signed_t>(tmp * s + o);
}
else if(act == ActivationFunction::LU_BOUNDED_RELU)
{
tmp = std::min(a, std::max(b, in));
tmp = utility::clamp<int32_t, qasymm8_signed_t>(tmp * s + o);
}
else if(act == ActivationFunction::LOGISTIC)
{
float tmp_f = dequantize_qasymm8_signed(in, qi_in);
tmp_f = 1.f / (1.f + std::exp(-tmp_f));
tmp = quantize_qasymm8_signed(tmp_f, qi_out);
}
else if(act == ActivationFunction::TANH)
{
float tmp_f = dequantize_qasymm8_signed(in, qi_in);
tmp_f = a_f32 * std::tanh(b_f32 * tmp_f);
tmp = quantize_qasymm8_signed(tmp_f, qi_out);
}
else if(act == ActivationFunction::HARD_SWISH)
{
float tmp_f = dequantize_qasymm8_signed(in, qi_in);
tmp_f = tmp_f * ((std::min(std::max((tmp_f + 3), 0.0f), 6.0f)) * 0.166666667f);
tmp = quantize_qasymm8_signed(tmp_f, qi_out);
}
else
{
ARM_COMPUTE_ERROR("Unsupported activation function");
}
*(output_ptr + x) = tmp;
}
},
input, output);
}
template <ActivationLayerInfo::ActivationFunction F, typename T>
typename std::enable_if<std::is_same<T, qsymm16_t>::value, void>::type NEActivationLayerKernel::activation(const ITensor *src, ITensor *dst, const Window &window)
{
const int window_step_x = 16 / sizeof(T);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const ActivationFunction act = F;
Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input(src, win_collapsed);
Iterator output(dst, win_collapsed);
const UniformQuantizationInfo qi_in = src->info()->quantization_info().uniform();
const UniformQuantizationInfo qi_out = dst->info()->quantization_info().uniform();
const auto vconst_1 = vdupq_n_f32(1.f);
const float32x4_t va_f32 = vdupq_n_f32(_act_info.a());
const float32x4_t vb_f32 = vdupq_n_f32(_act_info.b());
const float a_f32 = _act_info.a();
const float b_f32 = _act_info.b();
execute_window_loop(win_collapsed, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const T *>(input.ptr());
const auto output_ptr = reinterpret_cast<T *>(output.ptr());
wrapper::traits::neon_bitvector_t<T, wrapper::traits::BitWidth::W128> tmp;
ARM_COMPUTE_UNUSED(tmp);
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto vin = wrapper::vloadq(input_ptr + x);
if(act == ActivationFunction::LOGISTIC)
{
// De-quantize
const auto vin_deq = vdequantize_int16(vin, qi_in.scale);
// Perform activation
const float32x4x2_t tmp_dep =
{
{
wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[0])))),
wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[1])))),
}
};
// Re-quantize to new output space
tmp = vquantize_int16(tmp_dep, qi_out.scale);
}
else if(act == ActivationFunction::TANH)
{
// De-quantize
const auto vin_deq = vdequantize_int16(vin, qi_in.scale);
// Perform activation
const float32x4x2_t tmp_dep =
{
{
wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[0], vb_f32))),
wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[1], vb_f32))),
}
};
// Re-quantize to new output space
tmp = vquantize_int16(tmp_dep, qi_out.scale);
}
else
{
ARM_COMPUTE_ERROR("Unsupported activation function");
}
wrapper::vstore(output_ptr + x, tmp);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
T in = *(reinterpret_cast<const T *>(input_ptr + x));
T tmp;
if(act == ActivationFunction::LOGISTIC)
{
float tmp_f = dequantize_qsymm16(in, qi_in.scale);
tmp_f = 1.f / (1.f + std::exp(-tmp_f));
tmp = quantize_qsymm16(tmp_f, qi_out);
}
else if(act == ActivationFunction::TANH)
{
float tmp_f = dequantize_qsymm16(in, qi_in.scale);
tmp_f = a_f32 * std::tanh(b_f32 * tmp_f);
tmp = quantize_qsymm16(tmp_f, qi_out);
}
else
{
ARM_COMPUTE_ERROR("Unsupported activation function");
}
*(output_ptr + x) = tmp;
}
},
input, output);
}
Status NEActivationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const ActivationLayerInfo &act_info)
{
ARM_COMPUTE_UNUSED(act_info);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, act_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), (output != nullptr) ? output->clone().get() : nullptr).first);
return Status{};
}
void NEActivationLayerKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
// Early exit on disabled activation
if(!_act_info.enabled())
{
return;
}
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
ARM_COMPUTE_ERROR_ON(tensors.empty());
(this->*_func)(tensors.get_const_tensor(TensorType::ACL_SRC),
tensors.get_tensor(TensorType::ACL_DST),
window);
}
} // namespace arm_compute