blob: 364a317bc77e29b55274bc54b48bcc786df4b5f9 [file] [log] [blame]
/*
* Copyright (c) 2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __ARM_COMPUTE_NESYMM_H__
#define __ARM_COMPUTE_NESYMM_H__
#include "NEAsymm.h"
#include <arm_neon.h>
namespace arm_compute
{
/** Performs final quantization step on 8 signed 16-bit elements
*
* @tparam is_bounded_relu Specified if a fused bounded relu should be applied
*
* @param[in] in_s32 Input to be quantized.
* @param[in] result_fixedpoint_multiplier Result multiplier parameter
* @param[in] result_shift Result shift parameter
* @param[in] min_s16 Relu lower bound
* @param[in] max_s16 Relu upper bound
*
* @return Quantized values
*/
template <bool is_bounded_relu>
int16x8_t finalize_quantization_int16(int32x4x2_t &in_s32,
int result_fixedpoint_multiplier,
int32_t result_shift,
int16x8_t min_s16,
int16x8_t max_s16)
{
// Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
// Round to the nearest division by a power-of-two using result_shift_s32
in_s32.val[0] = rounding_divide_by_pow2(in_s32.val[0], result_shift);
in_s32.val[1] = rounding_divide_by_pow2(in_s32.val[1], result_shift);
// Convert S32 to S16
int16x8_t out_s16 = vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1]));
if(is_bounded_relu)
{
out_s16 = vmaxq_s16(out_s16, min_s16);
out_s16 = vminq_s16(out_s16, max_s16);
}
return out_s16;
}
/** Performs final quantization step on single signed 16-bit element
*
* @tparam is_bounded_relu Specified if a fused bounded relu should be applied
*
* @param[in] in_value Input to be quantized.
* @param[in] result_fixedpoint_multiplier Result multiplier parameter
* @param[in] result_shift Result shift parameter
* @param[in] min_s16 Relu lower bound
* @param[in] max_s16 Relu upper bound
*
* @return Quantized values
*/
template <bool is_bounded_relu>
inline int16_t finalize_quantization_int16(int32_t in_value, int result_fixedpoint_multiplier,
int32_t result_shift, int16_t min_s16, int16_t max_s16)
{
int32x4_t in_s32 = vdupq_n_s32(in_value);
// Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
in_value = vgetq_lane_s32(vqrdmulhq_n_s32(in_s32, result_fixedpoint_multiplier), 0);
// Shift value by result_shift_s32
in_value = rounding_divide_by_pow2(in_value, result_shift);
// Bound the result
int16_t out_s16 = static_cast<int16_t>(std::max<int32_t>(-32768, std::min<int32_t>(32767, in_value)));
if(is_bounded_relu)
{
out_s16 = static_cast<int16_t>(std::max(min_s16, std::min(max_s16, out_s16)));
}
return out_s16;
}
/** Dequantize a neon vector holding 8 16-bit quantized values.
*
* @param[in] qv Input values to be dequantized.
* @param[in] scale Quantization scale
*
* @return Dequantized values in a neon vector
*/
inline float32x4x2_t vdequantize_int16(const int16x8_t &qv, float scale)
{
const float32x4_t vscale = vdupq_n_f32(scale);
const float32x4x2_t vdequantized_input =
{
{
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(qv))), vscale),
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(qv))), vscale)
}
};
return vdequantized_input;
}
/** Quantize a neon vector holding 8 floating point values.
*
* @param[in] qv Input values to be quantized.
* @param[in] scale Quantization scale
*
* @return A neon vector holding the quantized values
*/
inline int16x8_t vquantize_int16(const float32x4x2_t &qv, float scale)
{
const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
const int32x4x2_t rf =
{
{
#ifdef __aarch64__
vcvtnq_s32_f32(vmulq_f32(qv.val[0], vinvscale)),
vcvtnq_s32_f32(vmulq_f32(qv.val[1], vinvscale))
#else //__aarch64__
vcvtq_s32_f32(vmulq_f32(qv.val[0], vinvscale)),
vcvtq_s32_f32(vmulq_f32(qv.val[1], vinvscale))
#endif //__aarch64__
}
};
return vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1]));
}
} // namespace arm_compute
#endif // __ARM_COMPUTE_NESYMM_H__