blob: 4f6fdfafee1c45c050cad416bfe66c78a1e99689 [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#if defined(DEPTH_MULTIPLIER) && defined(DST_CHANNELS)
#if defined(CONV_STRIDE_X)
#if CONV_STRIDE_X == 1
#define convolution1x3 convolution1x3_stride_1
#elif CONV_STRIDE_X == 2
#define convolution1x3 convolution1x3_stride_2
#elif CONV_STRIDE_X == 3
#define convolution1x3 convolution1x3_stride_3
#else /* CONV_STRIDE_X */
#error "Stride not supported"
#endif /* CONV_STRIDE_X */
/** Compute a 1D horizontal convolution of size 3 and stride 1 for floating point type.
*
* @param[in] left_pixel Pointer to the left pixel.
* @param[in] left_coeff Weight of the left pixel
* @param[in] middle_coeff Weight of the middle pixel
* @param[in] right_coeff Weight of the right pixel
*
* @return a float2 containing 2 convoluted values.
*/
inline float2 convolution1x3_stride_1(__global const uchar *left_pixel,
const float left_coeff,
const float middle_coeff,
const float right_coeff)
{
float4 temp = vload4(0, (__global float *)left_pixel);
float2 left = CONVERT(temp.s01, float2);
float2 middle = CONVERT(temp.s12, float2);
float2 right = CONVERT(temp.s23, float2);
return left * (float2)left_coeff + middle * (float2)middle_coeff + right * (float2)right_coeff;
}
/** Compute a 1D horizontal convolution of size 3 and stride 2 for floating point type.
*
* @param[in] left_pixel Pointer to the left pixel.
* @param[in] left_coeff Weight of the left pixel
* @param[in] middle_coeff Weight of the middle pixel
* @param[in] right_coeff Weight of the right pixel
*
* @return a float2 containing 2 convoluted values.
*/
inline float2 convolution1x3_stride_2(__global const uchar *left_pixel,
const float left_coeff,
const float middle_coeff,
const float right_coeff)
{
float4 temp0 = vload4(0, (__global float *)left_pixel);
float temp1 = *((__global float *)(left_pixel + 4 * sizeof(float)));
float2 left = CONVERT(temp0.s02, float2);
float2 middle = CONVERT(temp0.s13, float2);
float2 right = CONVERT((float2)(temp0.s2, temp1), float2);
return left * (float2)left_coeff + middle * (float2)middle_coeff + right * (float2)right_coeff;
}
/** Compute a 1D horizontal convolution of size 3 and stride 3 for floating point type.
*
* @param[in] left_pixel Pointer to the left pixel.
* @param[in] left_coeff Weight of the left pixel
* @param[in] middle_coeff Weight of the middle pixel
* @param[in] right_coeff Weight of the right pixel
*
* @return a float2 containing 2 convoluted values.
*/
inline float2 convolution1x3_stride_3(__global const uchar *left_pixel,
const float left_coeff,
const float middle_coeff,
const float right_coeff)
{
float4 temp0 = vload4(0, (__global float *)left_pixel);
float2 temp1 = vload2(0, (__global float *)(left_pixel + 4 * sizeof(float)));
float2 left = CONVERT(temp0.s03, float2);
float2 middle = CONVERT((float2)(temp0.s1, temp1.s0), float2);
float2 right = CONVERT((float2)(temp0.s2, temp1.s1), float2);
return left * (float2)left_coeff + middle * (float2)middle_coeff + right * (float2)right_coeff;
}
/** Apply a 3x3 convolution matrix to a single channel F32 input image and return the result.
*
* Convolution matrix layout:
*
* [ mat0, mat1, mat2 ]\n
* [ mat3, mat4, mat5 ]\n
* [ mat6, mat7, mat8 ]\n
*
* @param[in] src A pointer to source Image structure
* @param[in] mat0 Coefficient from the convolution matrix
* @param[in] mat1 Coefficient from the convolution matrix
* @param[in] mat2 Coefficient from the convolution matrix
* @param[in] mat3 Coefficient from the convolution matrix
* @param[in] mat4 Coefficient from the convolution matrix
* @param[in] mat5 Coefficient from the convolution matrix
* @param[in] mat6 Coefficient from the convolution matrix
* @param[in] mat0 Coefficient from the convolution matrix
* @param[in] mat7 Coefficient from the convolution matrix
* @param[in] mat8 Coefficient from the convolution matrix
*
* @return a float2 containing 2 convoluted values.
*/
inline float2 convolution3x3(
Image *src,
const float mat0, const float mat1, const float mat2,
const float mat3, const float mat4, const float mat5,
const float mat6, const float mat7, const float mat8)
{
float2 pixels;
pixels = convolution1x3(offset(src, 0, 0), mat0, mat1, mat2);
pixels += convolution1x3(offset(src, 0, 1), mat3, mat4, mat5);
pixels += convolution1x3(offset(src, 0, 2), mat6, mat7, mat8);
return pixels;
}
/** This OpenCL kernel computes the depthwise convolution 3x3
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_ptr Pointer to the destination tensor. Supported data types: F32
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] weights_ptr Pointer to the weights tensor. Supported data types: F32
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the biases vector
* @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: F16/F32
* @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
* @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
*/
__kernel void depthwise_convolution_3x3(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(weights)
#if defined(HAS_BIAS)
,
VECTOR_DECLARATION(biases)
#endif //defined(HAS_BIAS)
)
{
Image src = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
#if defined(HAS_BIAS)
Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
#endif //defined(HAS_BIAS)
// Extract channel and linearized batch indices
const int channel = get_global_id(2) % DST_CHANNELS;
const int batch = get_global_id(2) / DST_CHANNELS;
// Load relevant input and weights data (Accounts depth multiplier when indexing input, OFM = IFM * DEPTH_MULTIPLIER)
src.ptr -= batch * (DST_CHANNELS / DEPTH_MULTIPLIER) * (DEPTH_MULTIPLIER - 1) * src_step_z + (channel - (channel / DEPTH_MULTIPLIER)) * src_step_z;
__global uchar *weights_addr = weights.ptr + get_global_id(0) * weights_step_x + get_global_id(1) * weights_step_y + channel * weights_step_z;
uchar3 offset = (uchar3)(0, 1, 2) * (uchar3)weights_stride_y;
float3 weights_values0 = vload3(0, (__global float *)(weights_addr + offset.s0));
float3 weights_values1 = vload3(0, (__global float *)(weights_addr + offset.s1));
float3 weights_values2 = vload3(0, (__global float *)(weights_addr + offset.s2));
float2 pixels = convolution3x3(&src, weights_values0.s0, weights_values0.s1, weights_values0.s2,
weights_values1.s0, weights_values1.s1, weights_values1.s2,
weights_values2.s0, weights_values2.s1, weights_values2.s2);
#if defined(HAS_BIAS)
pixels += (float2)(*((__global float *)(biases.ptr + channel * biases_stride_x)));
#endif //defined(HAS_BIAS)
vstore2(pixels, 0, (__global float *)dst.ptr);
}
#endif //defined(CONV_STRIDE_X)
#define CONVOLUTION1x3_BIFROST2X1_STRIDE1(acc, src0, weights_row0) \
({ \
acc.s0 = fma(src0.s0, weights_row0.s0, acc.s0); \
acc.s0 = fma(src0.s1, weights_row0.s1, acc.s0); \
acc.s0 = fma(src0.s2, weights_row0.s2, acc.s0); \
acc.s1 = fma(src0.s1, weights_row0.s0, acc.s1); \
acc.s1 = fma(src0.s2, weights_row0.s1, acc.s1); \
acc.s1 = fma(src0.s3, weights_row0.s2, acc.s1); \
})
#define CONVOLUTION1x3_BIFROST4X1_STRIDE1(acc, src0, weights_row0) \
({ \
acc.s0 = fma(src0.s0, weights_row0.s0, acc.s0); \
acc.s0 = fma(src0.s1, weights_row0.s1, acc.s0); \
acc.s0 = fma(src0.s2, weights_row0.s2, acc.s0); \
acc.s1 = fma(src0.s1, weights_row0.s0, acc.s1); \
acc.s1 = fma(src0.s2, weights_row0.s1, acc.s1); \
acc.s1 = fma(src0.s3, weights_row0.s2, acc.s1); \
acc.s2 = fma(src0.s2, weights_row0.s0, acc.s2); \
acc.s2 = fma(src0.s3, weights_row0.s1, acc.s2); \
acc.s2 = fma(src0.s4, weights_row0.s2, acc.s2); \
acc.s3 = fma(src0.s3, weights_row0.s0, acc.s3); \
acc.s3 = fma(src0.s4, weights_row0.s1, acc.s3); \
acc.s3 = fma(src0.s5, weights_row0.s2, acc.s3); \
})
#define CONVOLUTION1x3_BIFROST2X1_STRIDE2(acc, src0, src1, weights_row0) \
({ \
acc.s0 = fma(src0.s0, weights_row0.s0, acc.s0); \
acc.s0 = fma(src0.s1, weights_row0.s1, acc.s0); \
acc.s0 = fma(src0.s2, weights_row0.s2, acc.s0); \
acc.s1 = fma(src0.s2, weights_row0.s0, acc.s1); \
acc.s1 = fma(src0.s3, weights_row0.s1, acc.s1); \
acc.s1 = fma(src1.s0, weights_row0.s2, acc.s1); \
})
#define CONVOLUTION1x3_BIFROST4X1_STRIDE2(acc, src0, src1, weights_row0) \
({ \
acc.s0 = fma(src0.s0, weights_row0.s0, acc.s0); \
acc.s0 = fma(src0.s1, weights_row0.s1, acc.s0); \
acc.s0 = fma(src0.s2, weights_row0.s2, acc.s0); \
acc.s1 = fma(src0.s2, weights_row0.s0, acc.s1); \
acc.s1 = fma(src0.s3, weights_row0.s1, acc.s1); \
acc.s1 = fma(src0.s4, weights_row0.s2, acc.s1); \
acc.s2 = fma(src0.s4, weights_row0.s0, acc.s2); \
acc.s2 = fma(src0.s5, weights_row0.s1, acc.s2); \
acc.s2 = fma(src0.s6, weights_row0.s2, acc.s2); \
acc.s3 = fma(src0.s6, weights_row0.s0, acc.s3); \
acc.s3 = fma(src0.s7, weights_row0.s1, acc.s3); \
acc.s3 = fma(src1.s0, weights_row0.s2, acc.s3); \
})
/** This OpenCL kernel is optimized for Bifrost architectures and computes the depthwise convolution 3x3 when both
* stride_x and stride_y are equal to 1
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_ptr Pointer to the destination tensor. Supported data types: F32
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] weights_ptr Pointer to the weights tensor. Supported data types: F32
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the biases vector
* @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: F32
* @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
* @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
*/
__kernel void depthwise_convolution_3x3_stridex1_stridey1_bifrost_f32(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(weights)
#if defined(HAS_BIAS)
,
VECTOR_DECLARATION(biases)
#endif //defined(HAS_BIAS)
)
{
Image src = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
float2 pixels0 = 0.0f;
float2 pixels1 = 0.0f;
float2 pixels2 = 0.0f;
float2 pixels3 = 0.0f;
// Extract channel and linearized batch indices
const int channel = get_global_id(2) % DST_CHANNELS;
const int batch = get_global_id(2) / DST_CHANNELS;
// Load relevant input and weights data (Accounts depth multiplier when indexing input, OFM = IFM * DEPTH_MULTIPLIER)
__global uchar *weights_addr = weights.ptr + get_global_id(0) * weights_step_x + get_global_id(1) * weights_step_y + channel * weights_step_z;
__global uchar *src_addr = src.ptr - batch * (DST_CHANNELS / DEPTH_MULTIPLIER) * (DEPTH_MULTIPLIER - 1) * src_step_z - (channel - (channel / DEPTH_MULTIPLIER)) * src_step_z;
// Load the weights
float3 weights_row0 = vload3(0, (__global float *)(weights_addr + 0 * weights_stride_y));
float3 weights_row1 = vload3(0, (__global float *)(weights_addr + 1 * weights_stride_y));
float3 weights_row2 = vload3(0, (__global float *)(weights_addr + 2 * weights_stride_y));
// Note: Since each work-item computes 4x2 elements, we need to load 6 rows from the input tensor
float4 src00 = vload4(0, (__global float *)(src_addr + 0 * src_stride_y)); // Row0
float4 src10 = vload4(0, (__global float *)(src_addr + 1 * src_stride_y)); // Row1
float4 src20 = vload4(0, (__global float *)(src_addr + 2 * src_stride_y)); // Row2
float4 src30 = vload4(0, (__global float *)(src_addr + 3 * src_stride_y)); // Row3
float4 src40 = vload4(0, (__global float *)(src_addr + 4 * src_stride_y)); // Row4
float4 src50 = vload4(0, (__global float *)(src_addr + 5 * src_stride_y)); // Row5
CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels0, src00, weights_row0);
CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels0, src10, weights_row1);
CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels0, src20, weights_row2);
CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels1, src10, weights_row0);
CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels1, src20, weights_row1);
CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels1, src30, weights_row2);
CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels2, src20, weights_row0);
CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels2, src30, weights_row1);
CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels2, src40, weights_row2);
CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels3, src30, weights_row0);
CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels3, src40, weights_row1);
CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels3, src50, weights_row2);
#ifdef HAS_BIAS
Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
float bias = *((__global float *)(vector_offset(&biases, channel)));
pixels0 += (float2)bias;
pixels1 += (float2)bias;
pixels2 += (float2)bias;
pixels3 += (float2)bias;
#endif /* defined(HAS_BIAS) */
vstore2(pixels0, 0, (__global float *)(dst.ptr + 0 * dst_stride_y));
vstore2(pixels1, 0, (__global float *)(dst.ptr + 1 * dst_stride_y));
vstore2(pixels2, 0, (__global float *)(dst.ptr + 2 * dst_stride_y));
vstore2(pixels3, 0, (__global float *)(dst.ptr + 3 * dst_stride_y));
}
/** This OpenCL kernel is optimized for Bifrost architectures and computes the depthwise convolution 3x3 when both
* stride_x and stride_y are equal to 2
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_ptr Pointer to the destination tensor. Supported data types: F32
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] weights_ptr Pointer to the weights tensor. Supported data types: F32
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the biases vector
* @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: F32
* @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
* @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
*/
__kernel void depthwise_convolution_3x3_stridex2_stridey2_bifrost_f32(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(weights)
#if defined(HAS_BIAS)
,
VECTOR_DECLARATION(biases)
#endif //defined(HAS_BIAS)
)
{
Image src = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
float2 pixels0 = 0.0f;
float2 pixels1 = 0.0f;
// Extract channel and linearized batch indices
const int channel = get_global_id(2) % DST_CHANNELS;
const int batch = get_global_id(2) / DST_CHANNELS;
// Load relevant input and weights data (Accounts depth multiplier when indexing input, OFM = IFM * DEPTH_MULTIPLIER)
__global uchar *weights_addr = weights.ptr + get_global_id(0) * weights_step_x + get_global_id(1) * weights_step_y + channel * weights_step_z;
__global uchar *src_addr = src.ptr - batch * (DST_CHANNELS / DEPTH_MULTIPLIER) * (DEPTH_MULTIPLIER - 1) * src_step_z - (channel - (channel / DEPTH_MULTIPLIER)) * src_step_z;
// Load the weights
float3 weights_row0 = vload3(0, (__global float *)(weights_addr + 0 * weights_stride_y));
float3 weights_row1 = vload3(0, (__global float *)(weights_addr + 1 * weights_stride_y));
float3 weights_row2 = vload3(0, (__global float *)(weights_addr + 2 * weights_stride_y));
// Note: Since each work-item computes 4x2 elements, we need to load 5 rows from the input tensor
float4 src00 = vload4(0, (__global float *)(src_addr + 0 * src_stride_y)); // Row0
float2 src01 = vload2(2, (__global float *)(src_addr + 0 * src_stride_y)); // Row0
float4 src10 = vload4(0, (__global float *)(src_addr + 1 * src_stride_y)); // Row1
float2 src11 = vload2(2, (__global float *)(src_addr + 1 * src_stride_y)); // Row1
float4 src20 = vload4(0, (__global float *)(src_addr + 2 * src_stride_y)); // Row2
float2 src21 = vload2(2, (__global float *)(src_addr + 2 * src_stride_y)); // Row2
float4 src30 = vload4(0, (__global float *)(src_addr + 3 * src_stride_y)); // Row3
float2 src31 = vload2(2, (__global float *)(src_addr + 3 * src_stride_y)); // Row3
float4 src40 = vload4(0, (__global float *)(src_addr + 4 * src_stride_y)); // Row4
float2 src41 = vload2(2, (__global float *)(src_addr + 4 * src_stride_y)); // Row4
CONVOLUTION1x3_BIFROST2X1_STRIDE2(pixels0, src00, src01, weights_row0);
CONVOLUTION1x3_BIFROST2X1_STRIDE2(pixels0, src10, src11, weights_row1);
CONVOLUTION1x3_BIFROST2X1_STRIDE2(pixels0, src20, src21, weights_row2);
CONVOLUTION1x3_BIFROST2X1_STRIDE2(pixels1, src20, src21, weights_row0);
CONVOLUTION1x3_BIFROST2X1_STRIDE2(pixels1, src30, src31, weights_row1);
CONVOLUTION1x3_BIFROST2X1_STRIDE2(pixels1, src40, src41, weights_row2);
#ifdef HAS_BIAS
Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
float bias = *((__global float *)(vector_offset(&biases, channel)));
pixels0 += (float2)bias;
pixels1 += (float2)bias;
#endif /* defined(HAS_BIAS) */
vstore2(pixels0, 0, (__global float *)(dst.ptr + 0 * dst_stride_y));
vstore2(pixels1, 0, (__global float *)(dst.ptr + 1 * dst_stride_y));
}
#endif // defined(DEPTH_MULTIPLIER) && defined(DST_CHANNELS)
#if defined(VEC_SIZE) && defined(DATA_TYPE) && defined(DST_WIDTH)
/** Reshape the weights for quantized depthwise convolution
*
* @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type, e.g. -DDATA_TYPE=uint8
* @note Output width should be given as a preprocessor argument using -DDST_WIDTH=width, e.g. -DDST_WIDTH=128
* @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=vec_size, e.g., -DVEC_SIZE=4
* @attention Input's height and width should be 3
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void depthwise_convolution_reshape_weights(
TENSOR3D_DECLARATION(src),
IMAGE_DECLARATION(dst))
{
Vector src = CONVERT_TO_VECTOR_STRUCT(src);
const int x = get_global_id(0);
// Load 3x3xVEC_SIZE weights
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
w0 = VLOAD(VEC_SIZE)(0, src.ptr + 0 * src_stride_y + 0 * src_stride_z);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
w1 = VLOAD(VEC_SIZE)(0, src.ptr + 1 * src_stride_y + 0 * src_stride_z);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
w2 = VLOAD(VEC_SIZE)(0, src.ptr + 2 * src_stride_y + 0 * src_stride_z);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
w3 = VLOAD(VEC_SIZE)(0, src.ptr + 0 * src_stride_y + 1 * src_stride_z);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
w4 = VLOAD(VEC_SIZE)(0, src.ptr + 1 * src_stride_y + 1 * src_stride_z);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
w5 = VLOAD(VEC_SIZE)(0, src.ptr + 2 * src_stride_y + 1 * src_stride_z);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
w6 = VLOAD(VEC_SIZE)(0, src.ptr + 0 * src_stride_y + 2 * src_stride_z);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
w7 = VLOAD(VEC_SIZE)(0, src.ptr + 1 * src_stride_y + 2 * src_stride_z);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
w8 = VLOAD(VEC_SIZE)(0, src.ptr + 2 * src_stride_y + 2 * src_stride_z);
__global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * DST_WIDTH * sizeof(DATA_TYPE);
#if defined(TRANSPOSE)
#if VEC_SIZE != 4
#error "VEC_SIZE not supported"
#else // VEC_SIZE != 4
VSTORE(VEC_SIZE)
((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))(w0.s0, w1.s0, w2.s0, w3.s0), 0, dst_addr + 0);
VSTORE(VEC_SIZE)
((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))(w4.s0, w5.s0, w6.s0, w7.s0), 0, dst_addr + 1 * sizeof(DATA_TYPE) * VEC_SIZE);
VSTORE(VEC_SIZE)
((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))(w8.s0, w0.s1, w1.s1, w2.s1), 0, dst_addr + 2 * sizeof(DATA_TYPE) * VEC_SIZE);
VSTORE(VEC_SIZE)
((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))(w3.s1, w4.s1, w5.s1, w6.s1), 0, dst_addr + 3 * sizeof(DATA_TYPE) * VEC_SIZE);
VSTORE(VEC_SIZE)
((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))(w7.s1, w8.s1, w0.s2, w1.s2), 0, dst_addr + 4 * sizeof(DATA_TYPE) * VEC_SIZE);
VSTORE(VEC_SIZE)
((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))(w2.s2, w3.s2, w4.s2, w5.s2), 0, dst_addr + 5 * sizeof(DATA_TYPE) * VEC_SIZE);
VSTORE(VEC_SIZE)
((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))(w6.s2, w7.s2, w8.s2, w0.s3), 0, dst_addr + 6 * sizeof(DATA_TYPE) * VEC_SIZE);
VSTORE(VEC_SIZE)
((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))(w1.s3, w2.s3, w3.s3, w4.s3), 0, dst_addr + 7 * sizeof(DATA_TYPE) * VEC_SIZE);
VSTORE(VEC_SIZE)
((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))(w5.s3, w6.s3, w7.s3, w8.s3), 0, dst_addr + 8 * sizeof(DATA_TYPE) * VEC_SIZE);
#endif // VEC_SIZE != 4
#else // !defined(TRANSPOSE)
VSTORE(VEC_SIZE)
(w0, 0, dst_addr + 0);
VSTORE(VEC_SIZE)
(w1, 0, dst_addr + 1 * sizeof(DATA_TYPE) * VEC_SIZE);
VSTORE(VEC_SIZE)
(w2, 0, dst_addr + 2 * sizeof(DATA_TYPE) * VEC_SIZE);
VSTORE(VEC_SIZE)
(w3, 0, dst_addr + 3 * sizeof(DATA_TYPE) * VEC_SIZE);
VSTORE(VEC_SIZE)
(w4, 0, dst_addr + 4 * sizeof(DATA_TYPE) * VEC_SIZE);
VSTORE(VEC_SIZE)
(w5, 0, dst_addr + 5 * sizeof(DATA_TYPE) * VEC_SIZE);
VSTORE(VEC_SIZE)
(w6, 0, dst_addr + 6 * sizeof(DATA_TYPE) * VEC_SIZE);
VSTORE(VEC_SIZE)
(w7, 0, dst_addr + 7 * sizeof(DATA_TYPE) * VEC_SIZE);
VSTORE(VEC_SIZE)
(w8, 0, dst_addr + 8 * sizeof(DATA_TYPE) * VEC_SIZE);
#endif // defined(TRANSPOSE)
}
#endif // defined(VEC_SIZE) && defined(DATA_TYPE) && defined(DST_WIDTH)
#if defined(NCHW)
#define in_stride_x src_stride_x
#define in_stride_y src_stride_y
#define in_stride_z src_stride_z
#define out_stride_x dst_stride_x
#define out_stride_y dst_stride_y
#define out_stride_z dst_stride_z
#else //defined(NCHW)
#define in_stride_x src_stride_y
#define in_stride_y src_stride_z
#define in_stride_z src_stride_x
#define out_stride_x dst_stride_y
#define out_stride_y dst_stride_z
#define out_stride_z dst_stride_x
#endif //defined(NCHW)
#if defined(SRC_WIDTH) && defined(DATA_TYPE)
/** This kernel reshapes each of the tensor's low three dimensions to single rows.
*
* @note Datatype and source width should be given as a preprocessor argument using -DDATA_TYPE=type and -DSRC_WIDTH=width. e.g. -DSRC_WIDTH=128
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: F16/F32
* @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
* @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
*/
__kernel void depthwise_convolution_reshape_weights_generic(
TENSOR3D_DECLARATION(src),
IMAGE_DECLARATION(dst)
#ifdef HAS_BIAS
,
VECTOR_DECLARATION(biases)
#endif /* HAS_BIAS */
)
{
#ifdef HAS_BIAS
Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
#endif /* HAS_BIAS */
__global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + get_global_id(1) * in_stride_y + get_global_id(2) * in_stride_z;
__global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + get_global_id(1) * SRC_WIDTH * dst_stride_x + get_global_id(2) * dst_stride_y;
for(int i = 0; i < SRC_WIDTH; ++i, input_ptr += in_stride_x)
{
*((__global DATA_TYPE *)(output_ptr + i * dst_stride_x)) = *((__global DATA_TYPE *)input_ptr);
}
#if defined(HAS_BIAS)
if(get_global_id(1) == 0)
{
*((__global DATA_TYPE *)(output_ptr + SRC_WIDTH * get_global_size(1) * dst_stride_x)) = *((__global DATA_TYPE *)(biases.ptr + get_global_id(2) * biases_stride_x));
}
#endif // defined(HAS_BIAS)
}
#endif //defined(SRC_WIDTH) && defined(DATA_TYPE)
#if defined(STRIDE_X) && defined(STRIDE_Y) && defined(PAD_LEFT) && defined(PAD_TOP) && defined(PAD_RIGHT) && defined(PAD_BOTTOM) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(DATA_TYPE) && defined(PAD_VALUE) && defined(DEPTH_MULTIPLIER)
/** This kernel performs a reshaping of the input tensor to a tensor used to perform depthwise convolution using vector to matrix multiplication.
*
* @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note The convolution information must be passed at compile time using -DSTRIDE_X, -DSTRIDE_Y, -DPAD_LEFT, -DPAD_TOP, -DPAD_RIGHT, -DPAD_BOTTOM, -DKERNEL_WIDHT, -DKERNEL_HEIGHT, -DSRC_WIDTH, -DSRC_HEIGHT, -DDEPTH_MULTIPLIER
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void depthwise_im2col(TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(dst))
{
Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
const int src_pixel_linear = get_global_id(1) * STRIDE_X;
const int full_length = SRC_WIDTH + PAD_LEFT + PAD_RIGHT;
const int max_initial_x = STRIDE_X * (((full_length - KERNEL_WIDTH) / STRIDE_X) + 1);
const int src_x = -PAD_LEFT + src_pixel_linear % max_initial_x;
const int src_y = -PAD_TOP + src_pixel_linear / max_initial_x * STRIDE_Y;
const int src_z = get_global_id(2) / DEPTH_MULTIPLIER;
__global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + src_z * in_stride_z;
__global DATA_TYPE *output_ptr = ((__global DATA_TYPE *)(dst.ptr));
for(int y = src_y; y < src_y + KERNEL_HEIGHT; ++y)
{
for(int x = src_x; x < src_x + KERNEL_WIDTH; ++x, ++output_ptr)
{
if(x < 0 || x >= SRC_WIDTH || y < 0 || y >= SRC_HEIGHT)
{
*output_ptr = PAD_VALUE;
}
else
{
*output_ptr = *((__global DATA_TYPE *)(input_ptr + x * in_stride_x + y * in_stride_y));
}
}
}
#if defined(HAS_BIAS)
*output_ptr = (DATA_TYPE)(1);
#endif // defined(HAS_BIAS)
}
#endif //defined(STRIDE_X) && defined(STRIDE_Y) && defined(PAD_LEFT) && defined(PAD_TOP) && defined(PAD_RIGHT) && defined(PAD_BOTTOM) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(SRC_WIDTH) && defined(DATA_TYPE) && defined(PAD_VALUE) && defined(DEPTH_MULTIPLIER)
#if defined(CONV_WIDTH) && defined(CONV_HEIGHT) && defined(DATA_TYPE)
/** This kernel performs a reshaping of the output of the depthwise generic convolution.
*
* @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note The convolution information must be passed at compile time using -DCONV_WIDTH, -DCONV_HEIGHT, e.g -DCONV_WIDTH=32, -DCONV_HEIGHT=42
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void depthwise_vector_to_tensor(
VECTOR_DECLARATION(src),
TENSOR3D_DECLARATION(dst))
{
Vector src = CONVERT_TO_VECTOR_STRUCT(src);
const int patch_size = CONV_WIDTH * CONV_HEIGHT;
const int id0 = get_global_id(0);
const int z = id0 / patch_size;
const int index2D = id0 - z * patch_size;
__global uchar *out_ptr = dst_ptr + dst_offset_first_element_in_bytes + index2D % CONV_WIDTH * out_stride_x + index2D / CONV_WIDTH * out_stride_y + z * out_stride_z;
*((__global DATA_TYPE *)out_ptr) = *((__global DATA_TYPE *)src.ptr);
}
#endif //defined(CONV_WIDTH) && defined(CONV_HEIGHT) && defined(DATA_TYPE)
#if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED) && defined(DEPTH_MULTIPLIER) && defined(DST_CHANNELS)
#if defined(CONV_STRIDE_X)
#if CONV_STRIDE_X == 1
#define convolution1x3_f16 convolution1x3_stride_1_f16
#elif CONV_STRIDE_X == 2
#define convolution1x3_f16 convolution1x3_stride_2_f16
#elif CONV_STRIDE_X == 3
#define convolution1x3_f16 convolution1x3_stride_3_f16
#else /* CONV_STRIDE_X */
#error "Stride not supported"
#endif /* CONV_STRIDE_X */
/** Compute a 1D horizontal convolution of size 3 and stride 1 for 16bit floating point type.
*
* @param[in] left_pixel Pointer to the left pixel.
* @param[in] left_coeff Weight of the left pixel
* @param[in] middle_coeff Weight of the middle pixel
* @param[in] right_coeff Weight of the right pixel
*
* @return a half4 containing 4 convoluted values.
*/
inline half4 convolution1x3_stride_1_f16(__global const uchar *left_pixel,
const half left_coeff,
const half middle_coeff,
const half right_coeff)
{
half8 temp = vload8(0, (__global half *)left_pixel);
half4 left = CONVERT(temp.s0123, half4);
half4 middle = CONVERT(temp.s1234, half4);
half4 right = CONVERT(temp.s2345, half4);
return left * (half4)left_coeff + middle * (half4)middle_coeff + right * (half4)right_coeff;
}
/** Compute a 1D horizontal convolution of size 3 and stride 2 for 16bit floating point type.
*
* @param[in] left_pixel Pointer to the left pixel.
* @param[in] left_coeff Weight of the left pixel
* @param[in] middle_coeff Weight of the middle pixel
* @param[in] right_coeff Weight of the right pixel
*
* @return a half4 containing 4 convoluted values.
*/
inline half4 convolution1x3_stride_2_f16(__global const uchar *left_pixel,
const half left_coeff,
const half middle_coeff,
const half right_coeff)
{
half8 temp0 = vload8(0, (__global half *)left_pixel);
half temp1 = *((__global half *)(left_pixel + 8 * sizeof(half)));
half4 left = CONVERT(temp0.s0246, half4);
half4 middle = CONVERT(temp0.s1357, half4);
half4 right = CONVERT((half4)(temp0.s246, temp1), half4);
return left * (half4)left_coeff + middle * (half4)middle_coeff + right * (half4)right_coeff;
}
/** Compute a 1D horizontal convolution of size 3 and stride 3 for 16bit floating point type.
*
* @param[in] left_pixel Pointer to the left pixel.
* @param[in] left_coeff Weight of the left pixel
* @param[in] middle_coeff Weight of the middle pixel
* @param[in] right_coeff Weight of the right pixel
*
* @return a half4 containing 4 convoluted values.
*/
inline half4 convolution1x3_stride_3_f16(__global const uchar *left_pixel,
const half left_coeff,
const half middle_coeff,
const half right_coeff)
{
half16 temp0 = vload16(0, (__global half *)left_pixel);
half4 left = CONVERT(temp0.s0369, half4);
half4 middle = CONVERT(temp0.s147A, half4);
half4 right = CONVERT(temp0.s258B, half4);
return left * (half4)left_coeff + middle * (half4)middle_coeff + right * (half4)right_coeff;
}
/** Apply a 3x3 convolution matrix to a single channel F16 input image and return the result.
*
* Convolution matrix layout:
*
* [ mat0, mat1, mat2 ]\n
* [ mat3, mat4, mat5 ]\n
* [ mat6, mat7, mat8 ]\n
*
* @param[in] src A pointer to source Image structure
* @param[in] mat0 Coefficient from the convolution matrix
* @param[in] mat1 Coefficient from the convolution matrix
* @param[in] mat2 Coefficient from the convolution matrix
* @param[in] mat3 Coefficient from the convolution matrix
* @param[in] mat4 Coefficient from the convolution matrix
* @param[in] mat5 Coefficient from the convolution matrix
* @param[in] mat6 Coefficient from the convolution matrix
* @param[in] mat0 Coefficient from the convolution matrix
* @param[in] mat7 Coefficient from the convolution matrix
* @param[in] mat8 Coefficient from the convolution matrix
*
* @return a half4 containing 4 convoluted values.
*/
inline half4 convolution3x3_f16(
Image *src,
const half mat0, const half mat1, const half mat2,
const half mat3, const half mat4, const half mat5,
const half mat6, const half mat7, const half mat8)
{
half4 pixels;
pixels = convolution1x3_f16(offset(src, 0, 0), mat0, mat1, mat2);
pixels += convolution1x3_f16(offset(src, 0, 1), mat3, mat4, mat5);
pixels += convolution1x3_f16(offset(src, 0, 2), mat6, mat7, mat8);
return pixels;
}
#if defined(DEPTH_MULTIPLIER)
/** This OpenCL kernel computes the depthwise convolution 3x3
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the biases vector
* @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: F16/F32
* @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
* @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
*/
__kernel void depthwise_convolution_3x3_f16(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(weights)
#if defined(HAS_BIAS)
,
VECTOR_DECLARATION(biases)
#endif //defined(HAS_BIAS)
)
{
Image src = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
#if defined(HAS_BIAS)
Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
#endif //defined(HAS_BIAS)
// Extract channel and linearized batch indices
const int channel = get_global_id(2) % DST_CHANNELS;
const int batch = get_global_id(2) / DST_CHANNELS;
// Load relevant input and weights data (Accounts depth multiplier when indexing input, OFM = IFM * DEPTH_MULTIPLIER)
src.ptr -= batch * (DST_CHANNELS / DEPTH_MULTIPLIER) * (DEPTH_MULTIPLIER - 1) * src_step_z + (channel - (channel / DEPTH_MULTIPLIER)) * src_step_z;
__global uchar *weights_addr = weights.ptr + get_global_id(0) * weights_step_x + get_global_id(1) * weights_step_y + channel * weights_step_z;
uchar3 offset = (uchar3)(0, 1, 2) * (uchar3)weights_stride_y;
half3 weights_values0 = vload3(0, (__global half *)(weights_addr + offset.s0));
half3 weights_values1 = vload3(0, (__global half *)(weights_addr + offset.s1));
half3 weights_values2 = vload3(0, (__global half *)(weights_addr + offset.s2));
half4 pixels = convolution3x3_f16(&src, weights_values0.s0, weights_values0.s1, weights_values0.s2,
weights_values1.s0, weights_values1.s1, weights_values1.s2,
weights_values2.s0, weights_values2.s1, weights_values2.s2);
#if defined(HAS_BIAS)
pixels += (half4)(*((__global half *)(biases.ptr + channel * biases_stride_x)));
#endif //defined(HAS_BIAS)
vstore4(pixels, 0, (__global half *)dst.ptr);
}
#endif // defined(DEPTH_MULTIPLIER)
#endif // defined(CONV_STRIDE_X)
/** This OpenCL kernel is optimized for Bifrost architectures and computes the 16bit floating point depthwise convolution 3x3
* when both stride_x and stride_y are equal to 1
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the biases vector
* @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: same as @p src_ptr
* @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
* @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
*/
__kernel void depthwise_convolution_3x3_stridex1_stridey1_bifrost_f16(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(weights)
#if defined(HAS_BIAS)
,
VECTOR_DECLARATION(biases)
#endif //defined(HAS_BIAS)
)
{
Image src = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
// Extract channel and linearized batch indices
const int channel = get_global_id(2) % DST_CHANNELS;
const int batch = get_global_id(2) / DST_CHANNELS;
#ifdef HAS_BIAS
Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
half bias = *((__global half *)(vector_offset(&biases, channel)));
#endif /* defined(HAS_BIAS) */
half4 pixels0 = 0.0f;
half4 pixels1 = 0.0f;
half4 pixels2 = 0.0f;
half4 pixels3 = 0.0f;
// Load relevant input and weights data (Accounts depth multiplier when indexing input, OFM = IFM * DEPTH_MULTIPLIER)
__global uchar *weights_addr = weights.ptr + get_global_id(0) * weights_step_x + get_global_id(1) * weights_step_y + channel * weights_step_z;
__global uchar *src_addr = src.ptr - batch * (DST_CHANNELS / DEPTH_MULTIPLIER) * (DEPTH_MULTIPLIER - 1) * src_step_z - (channel - (channel / DEPTH_MULTIPLIER)) * src_step_z;
// Load the weights
half3 weights_row0 = vload3(0, (__global half *)(weights_addr + 0 * weights_stride_y));
half3 weights_row1 = vload3(0, (__global half *)(weights_addr + 1 * weights_stride_y));
half3 weights_row2 = vload3(0, (__global half *)(weights_addr + 2 * weights_stride_y));
// Note: Since each work-item computes 4x4 elements, we need to load 6 rows from the input tensor
half8 src00 = vload8(0, (__global half *)(src_addr + 0 * src_stride_y)); // Row0
half8 src10 = vload8(0, (__global half *)(src_addr + 1 * src_stride_y)); // Row1
half8 src20 = vload8(0, (__global half *)(src_addr + 2 * src_stride_y)); // Row2
half8 src30 = vload8(0, (__global half *)(src_addr + 3 * src_stride_y)); // Row3
half8 src40 = vload8(0, (__global half *)(src_addr + 4 * src_stride_y)); // Row4
half8 src50 = vload8(0, (__global half *)(src_addr + 5 * src_stride_y)); // Row5
CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels0, src00, weights_row0);
CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels0, src10, weights_row1);
CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels0, src20, weights_row2);
CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels1, src10, weights_row0);
CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels1, src20, weights_row1);
CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels1, src30, weights_row2);
CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels2, src20, weights_row0);
CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels2, src30, weights_row1);
CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels2, src40, weights_row2);
CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels3, src30, weights_row0);
CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels3, src40, weights_row1);
CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels3, src50, weights_row2);
#ifdef HAS_BIAS
pixels0 += (half4)bias;
pixels1 += (half4)bias;
pixels2 += (half4)bias;
pixels3 += (half4)bias;
#endif /* defined(HAS_BIAS) */
vstore4(pixels0, 0, (__global half *)(dst.ptr + 0 * dst_stride_y));
vstore4(pixels1, 0, (__global half *)(dst.ptr + 1 * dst_stride_y));
vstore4(pixels2, 0, (__global half *)(dst.ptr + 2 * dst_stride_y));
vstore4(pixels3, 0, (__global half *)(dst.ptr + 3 * dst_stride_y));
}
/** This OpenCL kernel is optimized for Bifrost architectures and computes 16bit floating point the depthwise convolution 3x3
* when both stride_x and stride_y are equal to 2
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_y * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the biases vector
* @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: same as @p src_ptr
* @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
* @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
*/
__kernel void depthwise_convolution_3x3_stridex2_stridey2_bifrost_f16(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(weights)
#if defined(HAS_BIAS)
,
VECTOR_DECLARATION(biases)
#endif //defined(HAS_BIAS)
)
{
Image src = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
// Extract channel and linearized batch indices
const int channel = get_global_id(2) % DST_CHANNELS;
const int batch = get_global_id(2) / DST_CHANNELS;
#ifdef HAS_BIAS
Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
half bias = *((__global half *)(vector_offset(&biases, channel)));
#endif /* defined(HAS_BIAS) */
half4 pixels0 = 0.0f;
half4 pixels1 = 0.0f;
// Load relevant input and weights data ( Accounts depth multiplier when indexing input, OFM = IFM * DEPTH_MULTIPLIER)
__global uchar *weights_addr = weights.ptr + get_global_id(0) * weights_step_x + get_global_id(1) * weights_step_y + channel * weights_step_z;
__global uchar *src_addr = src.ptr - batch * (DST_CHANNELS / DEPTH_MULTIPLIER) * (DEPTH_MULTIPLIER - 1) * src_step_z - (channel - (channel / DEPTH_MULTIPLIER)) * src_step_z;
// Load the weights
half3 weights_row0 = vload3(0, (__global half *)(weights_addr + 0 * weights_stride_y));
half3 weights_row1 = vload3(0, (__global half *)(weights_addr + 1 * weights_stride_y));
half3 weights_row2 = vload3(0, (__global half *)(weights_addr + 2 * weights_stride_y));
// Note: Since each work-item computes 2x4 elements, we need to load 5 rows from the input tensor
half8 src00 = vload8(0, (__global half *)(src_addr + 0 * src_stride_y)); // Row0
half2 src01 = vload2(4, (__global half *)(src_addr + 0 * src_stride_y)); // Row0
half8 src10 = vload8(0, (__global half *)(src_addr + 1 * src_stride_y)); // Row1
half2 src11 = vload2(4, (__global half *)(src_addr + 1 * src_stride_y)); // Row1
half8 src20 = vload8(0, (__global half *)(src_addr + 2 * src_stride_y)); // Row2
half2 src21 = vload2(4, (__global half *)(src_addr + 2 * src_stride_y)); // Row2
half8 src30 = vload8(0, (__global half *)(src_addr + 3 * src_stride_y)); // Row3
half2 src31 = vload2(4, (__global half *)(src_addr + 3 * src_stride_y)); // Row3
half8 src40 = vload8(0, (__global half *)(src_addr + 4 * src_stride_y)); // Row4
half2 src41 = vload2(4, (__global half *)(src_addr + 4 * src_stride_y)); // Row4
CONVOLUTION1x3_BIFROST4X1_STRIDE2(pixels0, src00, src01, weights_row0);
CONVOLUTION1x3_BIFROST4X1_STRIDE2(pixels0, src10, src11, weights_row1);
CONVOLUTION1x3_BIFROST4X1_STRIDE2(pixels0, src20, src21, weights_row2);
CONVOLUTION1x3_BIFROST4X1_STRIDE2(pixels1, src20, src21, weights_row0);
CONVOLUTION1x3_BIFROST4X1_STRIDE2(pixels1, src30, src31, weights_row1);
CONVOLUTION1x3_BIFROST4X1_STRIDE2(pixels1, src40, src41, weights_row2);
#ifdef HAS_BIAS
pixels0 += (half4)bias;
pixels1 += (half4)bias;
#endif /* defined(HAS_BIAS) */
vstore4(pixels0, 0, (__global half *)(dst.ptr + 0 * dst_stride_y));
vstore4(pixels1, 0, (__global half *)(dst.ptr + 1 * dst_stride_y));
}
#endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED) && defined(DEPTH_MULTIPLIER) && defined(DST_CHANNELS)
#if defined(VEC_SIZE) && defined(SRC_DIM_2) && defined(CONV_PAD_TOP) && defined(CONV_PAD_LEFT) && defined(DATA_TYPE)
#if DATA_TYPE != float || DATA_TYPE != half
#error "Unsupported data type"
#endif // DATA_TYPE != float || DATA_TYPE != half
#define VEC_FLOAT VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
#if defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y)
/** This function computes the depthwise convolution for NHWC data layout when the stride along the width or height is not 1.
*
* @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=float
* @note The number of elements read per thread must be passed at compile time using -DVEC_SIZE (e.g. -DVEC_SIZE=2)
* @note Dimension two of the input tensor (height for NHWC data layout) must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM_2=112)
* @note The convolution pad top must be passed at compile time using -DCONV_PAD_TOP (e.g. -DCONV_PAD_TOP=1)
* @note The convolution pad top must be passed at compile time using -DCONV_PAD_LEFT (e.g. -DCONV_PAD_LEFT=1)
* @note The convolution stride along the width must be passed at compile time using -DCONV_STRIDE_X (e.g. -DCONV_STRIDE_Y=X)
* @note The convolution stride along the height must be passed at compile time using -DCONV_STRIDE_Y (e.g. -DCONV_STRIDE_Y=1)
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: FP32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_y * number of elements along Z processed per workitem(in bytes)
* @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
* @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes)
* @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] weights_ptr Pointer to the weights tensor. Supported data types: QASYMM8
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
* @param[in] max_offset Max offset for the input tensor
* @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: same as src_ptr
* @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
* @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
*/
__kernel void depthwise_convolution_3x3_nhwc(
TENSOR4D_DECLARATION(src),
TENSOR4D_DECLARATION(dst),
TENSOR3D_DECLARATION(weights),
#if defined(HAS_BIAS)
VECTOR_DECLARATION(biases),
#endif /* defined(HAS_BIAS) */
int max_offset)
{
int x = get_global_id(0); // channels
int y = get_global_id(1); // spatial coordinate x
#if defined(DST_DEPTH)
int z = get_global_id(2) % (int)DST_DEPTH; // spatial coordinate y
int b = get_global_id(2) / (int)DST_DEPTH; // batch
#else // defined(DST_DEPTH)
int z = get_global_id(2); // spatial coordinate y
#endif // defined(DST_DEPTH)
Vector weights = CONVERT_TO_VECTOR_STRUCT(weights);
#if defined(DST_DEPTH)
__global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) * VEC_SIZE + b * src_stride_w;
#else /* defined(DST_DEPTH) */
__global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) * VEC_SIZE;
#endif /* defined(DST_DEPTH) */
int z_coord = 0;
int4 offset = 0;
int4 y_offset = ((int4)(y * CONV_STRIDE_X) + (int4)(0, 1, 2, 3) - CONV_PAD_LEFT) * (int4)src_stride_y;
// We compute 2x1x1 [C,W,H] elements
VEC_FLOAT acc = 0;
// Load weights
VEC_FLOAT w0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 0 * weights_stride_y + 0 * weights_stride_z));
VEC_FLOAT w1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 1 * weights_stride_y + 0 * weights_stride_z));
VEC_FLOAT w2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 2 * weights_stride_y + 0 * weights_stride_z));
VEC_FLOAT w3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 0 * weights_stride_y + 1 * weights_stride_z));
VEC_FLOAT w4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 1 * weights_stride_y + 1 * weights_stride_z));
VEC_FLOAT w5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 2 * weights_stride_y + 1 * weights_stride_z));
VEC_FLOAT w6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 0 * weights_stride_y + 2 * weights_stride_z));
VEC_FLOAT w7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 1 * weights_stride_y + 2 * weights_stride_z));
VEC_FLOAT w8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 2 * weights_stride_y + 2 * weights_stride_z));
// Load input values
// z == 0
// Clamp z_coord as for z = 0, it can be negative
// z_coord is casted to unsigned int in order to use just a min() operation
// A "-1" 32 bit signed variable converted to unsigned gives 4294967295
z_coord = z * CONV_STRIDE_Y - (int)CONV_PAD_TOP;
z_coord = min((uint)z_coord, (uint)SRC_DIM_2);
offset = y_offset + (int4)(z_coord * src_stride_z);
offset = min(offset, (int4)max_offset);
VEC_FLOAT values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
VEC_FLOAT values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
VEC_FLOAT values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
// z == 1
// z_coord can be only negative for z = 0 so we do not need to clamp it
// Moreover z_coord cannot be out-of-bound for z = 1 so we do not need to clamp the offset
z_coord = z * CONV_STRIDE_Y - (int)CONV_PAD_TOP + 1;
offset = y_offset + (int4)(z_coord * src_stride_z);
VEC_FLOAT values3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
VEC_FLOAT values4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
VEC_FLOAT values5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
// z == 2
// After z = 1 we can simply add src_stride_z to offset without updating z_coord
// However offset can be out-of-bound so we need to check if it is greater than max_offset
offset += (int4)src_stride_z;
offset = min(offset, (int4)max_offset);
VEC_FLOAT values6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
VEC_FLOAT values7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
VEC_FLOAT values8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
acc = fma(values0, w0, acc);
acc = fma(values1, w1, acc);
acc = fma(values2, w2, acc);
acc = fma(values3, w3, acc);
acc = fma(values4, w4, acc);
acc = fma(values5, w5, acc);
acc = fma(values6, w6, acc);
acc = fma(values7, w7, acc);
acc = fma(values8, w8, acc);
#if defined(HAS_BIAS)
Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
VEC_FLOAT bias_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)biases.ptr);
acc += bias_values;
#endif // defined(HAS_BIAS)
#if defined(DST_DEPTH)
__global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + z * dst_step_z + b * dst_stride_w;
#else /* defined(DST_DEPTH) */
__global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + z * dst_step_z;
#endif /* defined(DST_DEPTH) */
VSTORE(VEC_SIZE)
(acc, 0, (__global DATA_TYPE *)(dst_addr));
}
#endif // defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y)
#if defined(NUM_ROWS_PROCESSED) && defined(NUM_PLANES_PROCESSED)
/** This function computes the depthwise convolution for NHWC data layout when the stride along the width and height is 1.
*
* @note The number of elements read per thread must be passed at compile time using -DVEC_SIZE (e.g. -DVEC_SIZE=2)
* @note Dimension two of the input tensor (height for NHWC data layout) must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM_2=112)
* @note The number of rows processed per thread must be passed at compile time using -DNUM_ROWS_PROCESSED (i.e. -DNUM_ROWS_PROCESSED=2)
* @note The number of planes processed per thread must be passed at compile time using -DNUM_PLANES_PROCESSED (i.e. -DNUM_PLANES_PROCESSED=2)
* @note The convolution pad top must be passed at compile time using -DCONV_PAD_TOP (e.g. -DCONV_PAD_TOP=1)
* @note The convolution pad top must be passed at compile time using -DCONV_PAD_LEFT (e.g. -DCONV_PAD_LEFT=1)
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: FP32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_y * number of elements along Z processed per workitem(in bytes)
* @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
* @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes)
* @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] weights_ptr Pointer to the weights tensor. Supported data types: QASYMM8
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
* @param[in] max_offset Max offset for the input tensor
* @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: same as src_ptr
* @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
* @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
*/
__kernel void depthwise_convolution_3x3_nhwc_stride1(
TENSOR4D_DECLARATION(src),
TENSOR4D_DECLARATION(dst),
TENSOR3D_DECLARATION(weights),
#if defined(HAS_BIAS)
VECTOR_DECLARATION(biases),
#endif /* defined(HAS_BIAS) */
int max_offset)
{
int x = get_global_id(0); // channels
int y = get_global_id(1); // spatial coordinate x
#if defined(DST_DEPTH)
int z = get_global_id(2) % (int)DST_DEPTH; // spatial coordinate y
int b = get_global_id(2) / (int)DST_DEPTH; // batch
#else // defined(DST_DEPTH)
int z = get_global_id(2); // spatial coordinate y
#endif // defined(DST_DEPTH)
Vector weights = CONVERT_TO_VECTOR_STRUCT(weights);
#if defined(DST_DEPTH)
__global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) * VEC_SIZE + b * src_stride_w;
#else /* defined(DST_DEPTH) */
__global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) * VEC_SIZE;
#endif /* defined(DST_DEPTH) */
int z_coord = 0;
int4 offset = 0;
int4 y_offset = ((int4)(y * NUM_ROWS_PROCESSED) + (int4)(0, 1, 2, 3) - (int)CONV_PAD_LEFT) * (int4)src_stride_y;
// We compute 2x2x2 [C,W,H] elements
VEC_FLOAT acc0 = 0;
VEC_FLOAT acc1 = 0;
VEC_FLOAT acc2 = 0;
VEC_FLOAT acc3 = 0;
// Load weights
VEC_FLOAT w0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 0 * weights_stride_y + 0 * weights_stride_z));
VEC_FLOAT w1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 1 * weights_stride_y + 0 * weights_stride_z));
VEC_FLOAT w2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 2 * weights_stride_y + 0 * weights_stride_z));
VEC_FLOAT w3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 0 * weights_stride_y + 1 * weights_stride_z));
VEC_FLOAT w4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 1 * weights_stride_y + 1 * weights_stride_z));
VEC_FLOAT w5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 2 * weights_stride_y + 1 * weights_stride_z));
VEC_FLOAT w6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 0 * weights_stride_y + 2 * weights_stride_z));
VEC_FLOAT w7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 1 * weights_stride_y + 2 * weights_stride_z));
VEC_FLOAT w8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 2 * weights_stride_y + 2 * weights_stride_z));
// Load input values
// z == 0
// Clamp z_coord as for z = 0, it can be negative
// z_coord is casted to unsigned int in order to use just a min() operation
// A "-1" 32 bit signed variable converted to unsigned gives 4294967295
z_coord = z * (int)NUM_PLANES_PROCESSED - (int)CONV_PAD_TOP;
z_coord = min((uint)z_coord, (uint)SRC_DIM_2);
offset = y_offset + (int4)(z_coord * src_stride_z);
offset = min(offset, (int4)max_offset);
VEC_FLOAT values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
VEC_FLOAT values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
VEC_FLOAT values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
VEC_FLOAT values3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
// z == 1
// z_coord can be only negative for z = 0 so we do not need to clamp it
// Moreover z_coord cannot be out-of-bound for z = 1 so we do not need to clamp the offset
z_coord = z * (int)NUM_PLANES_PROCESSED - (int)CONV_PAD_TOP + 1;
offset = y_offset + (int4)(z_coord * src_stride_z);
VEC_FLOAT values4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
VEC_FLOAT values5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
VEC_FLOAT values6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
VEC_FLOAT values7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
// z == 2
// After z = 1 we can simply add src_stride_z to offset without updating z_coord
// However offset can be out-of-bound so we need to check if it is greater than max_offset
offset += (int4)src_stride_z;
offset = min(offset, (int4)max_offset);
VEC_FLOAT values8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
VEC_FLOAT values9 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
VEC_FLOAT values10 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
VEC_FLOAT values11 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
// z == 3
// After z = 1 we can simply add src_stride_z to offset without updating z_coord
// However offset can be out-of-bound so we need to check if it is greater than max_offset
offset += (int4)src_stride_z;
offset = min(offset, (int4)max_offset);
VEC_FLOAT values12 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
VEC_FLOAT values13 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
VEC_FLOAT values14 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
VEC_FLOAT values15 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
acc0 = fma(values0, w0, acc0);
acc0 = fma(values1, w1, acc0);
acc0 = fma(values2, w2, acc0);
acc1 = fma(values1, w0, acc1);
acc1 = fma(values2, w1, acc1);
acc1 = fma(values3, w2, acc1);
acc0 = fma(values4, w3, acc0);
acc0 = fma(values5, w4, acc0);
acc0 = fma(values6, w5, acc0);
acc1 = fma(values5, w3, acc1);
acc1 = fma(values6, w4, acc1);
acc1 = fma(values7, w5, acc1);
acc0 = fma(values8, w6, acc0);
acc0 = fma(values9, w7, acc0);
acc0 = fma(values10, w8, acc0);
acc1 = fma(values9, w6, acc1);
acc1 = fma(values10, w7, acc1);
acc1 = fma(values11, w8, acc1);
acc2 = fma(values4, w0, acc2);
acc2 = fma(values5, w1, acc2);
acc2 = fma(values6, w2, acc2);
acc3 = fma(values5, w0, acc3);
acc3 = fma(values6, w1, acc3);
acc3 = fma(values7, w2, acc3);
acc2 = fma(values8, w3, acc2);
acc2 = fma(values9, w4, acc2);
acc2 = fma(values10, w5, acc2);
acc3 = fma(values9, w3, acc3);
acc3 = fma(values10, w4, acc3);
acc3 = fma(values11, w5, acc3);
acc2 = fma(values12, w6, acc2);
acc2 = fma(values13, w7, acc2);
acc2 = fma(values14, w8, acc2);
acc3 = fma(values13, w6, acc3);
acc3 = fma(values14, w7, acc3);
acc3 = fma(values15, w8, acc3);
#if defined(HAS_BIAS)
Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
VEC_FLOAT bias_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)biases.ptr);
acc0 += bias_values;
acc1 += bias_values;
acc2 += bias_values;
acc3 += bias_values;
#endif // defined(HAS_BIAS)
#if defined(DST_DEPTH)
__global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + (z * NUM_PLANES_PROCESSED) * dst_step_z + b * dst_stride_w;
#else /* defined(DST_DEPTH) */
__global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + (z * NUM_PLANES_PROCESSED) * dst_step_z;
#endif /* defined(DST_DEPTH) */
VSTORE(VEC_SIZE)
(acc0, 0, (__global DATA_TYPE *)(dst_addr + 0 * dst_stride_y));
VSTORE(VEC_SIZE)
(acc1, 0, (__global DATA_TYPE *)(dst_addr + 1 * dst_stride_y));
#if((DST_DIM_2 % NUM_PLANES_PROCESSED) != 0)
if((z * NUM_PLANES_PROCESSED + 1) < DST_DIM_2)
#endif // ((DST_DIM_2 % NUM_PLANES_PROCESSED) != 0)
{
VSTORE(VEC_SIZE)
(acc2, 0, (__global DATA_TYPE *)(dst_addr + 0 * dst_stride_y + 1 * dst_stride_z));
VSTORE(VEC_SIZE)
(acc3, 0, (__global DATA_TYPE *)(dst_addr + 1 * dst_stride_y + 1 * dst_stride_z));
}
}
#endif // defined(NUM_ROWS_PROCESSED) && defined(NUM_PLANES_PROCESSED)
#endif // defined(VEC_SIZE) && defined(SRC_DIM_2) && defined(CONV_PAD_TOP) && defined(CONV_PAD_LEFT) && defined(DATA_TYPE)