blob: 15cbfcedfba0dbe373a7b0fef1ad9cde64f64abb [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.h"
#include "arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include "support/ToolchainSupport.h"
namespace arm_compute
{
using namespace arm_compute::misc;
using namespace arm_compute::misc::shape_calculator;
CLDepthwiseConvolutionLayer3x3::CLDepthwiseConvolutionLayer3x3(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)), _kernel(nullptr), _border_handler(), _permute_input_to_nchw(), _permute_weights_to_nchw(), _permute_output_to_nhwc(), _reshape_weights(), _permuted_input(),
_permuted_weights(), _permuted_output(), _original_weights(nullptr), _needs_permute(false), _needs_weights_reshape(false), _is_prepared(false)
{
}
void CLDepthwiseConvolutionLayer3x3::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier,
ActivationLayerInfo act_info)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
const bool is_nhwc = input->info()->data_layout() == DataLayout::NHWC;
_needs_permute = is_nhwc && (depth_multiplier > 1);
_needs_weights_reshape = is_nhwc && (depth_multiplier == 1)
&& is_data_type_quantized_asymmetric(input->info()->data_type());
_is_prepared = false;
_original_weights = weights;
ICLTensor *input_to_use = input;
const ICLTensor *weights_to_use = weights;
ICLTensor *output_to_use = output;
const bool is_stride_1 = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1));
const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device());
DepthwiseConvolutionReshapeInfo info;
info.c0 = 4;
info.transpose = is_stride_1 && is_dot8_supported;
if(_needs_permute)
{
_memory_group.manage(&_permuted_input);
_memory_group.manage(&_permuted_output);
// Configure the function to transform the input tensor from NHWC -> NCHW
_permute_input_to_nchw.configure(input, &_permuted_input, PermutationVector(1U, 2U, 0U));
_permuted_input.info()->set_data_layout(DataLayout::NCHW);
// Configure the function to transform the weights tensor from HWI -> IHW
_permute_weights_to_nchw.configure(weights, &_permuted_weights, PermutationVector(1U, 2U, 0U));
_permuted_weights.info()->set_data_layout(DataLayout::NCHW);
input_to_use = &_permuted_input;
weights_to_use = &_permuted_weights;
output_to_use = &_permuted_output;
_kernel = arm_compute::support::cpp14::make_unique<CLDepthwiseConvolutionLayer3x3NCHWKernel>();
}
else if(is_nhwc)
{
if(_needs_weights_reshape)
{
_reshape_weights.configure(weights, &_permuted_weights, info);
weights_to_use = &_permuted_weights;
}
_kernel = arm_compute::support::cpp14::make_unique<CLDepthwiseConvolutionLayer3x3NHWCKernel>();
}
else
{
_kernel = arm_compute::support::cpp14::make_unique<CLDepthwiseConvolutionLayer3x3NCHWKernel>();
}
// Configure kernel
_kernel->set_target(CLScheduler::get().target());
_kernel->configure(input_to_use, weights_to_use, biases, output_to_use, conv_info, depth_multiplier, act_info);
// Permute output if needed
if(_needs_permute)
{
// Configure the function to transform the convoluted output to ACL's native ordering format NCHW
_permuted_output.info()->set_data_layout(DataLayout::NCHW);
_permute_output_to_nhwc.configure(&_permuted_output, output, PermutationVector(2U, 0U, 1U));
// Allocate tensors
_permuted_input.allocator()->allocate();
_permuted_output.allocator()->allocate();
}
// Configure border handler
PixelValue &&zero_value(0.f);
if(is_data_type_quantized_asymmetric(input->info()->data_type()))
{
zero_value = PixelValue(static_cast<uint8_t>(input->info()->quantization_info().offset));
}
_border_handler.configure(input_to_use, _kernel->border_size(), BorderMode::CONSTANT, zero_value);
}
Status CLDepthwiseConvolutionLayer3x3::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier,
ActivationLayerInfo act_info, GPUTarget gpu_target)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN);
const bool is_nhwc = input->data_layout() == DataLayout::NHWC;
const bool needs_permute = is_nhwc && (depth_multiplier > 1);
const bool needs_weights_reshape = is_nhwc && (depth_multiplier == 1);
const bool is_stride_1 = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1));
const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device());
DepthwiseConvolutionReshapeInfo info;
info.c0 = 4;
info.transpose = is_stride_1 && is_dot8_supported;
if(needs_permute)
{
TensorShape permuted_input_shape = input->tensor_shape();
TensorShape permuted_weights_shape = weights->tensor_shape();
TensorShape permuted_output_shape = shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier);
permute(permuted_input_shape, PermutationVector(1U, 2U, 0U));
permute(permuted_weights_shape, PermutationVector(1U, 2U, 0U));
permute(permuted_output_shape, PermutationVector(1U, 2U, 0U));
const TensorInfo permuted_input = input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_input_shape).set_data_layout(DataLayout::NCHW);
const TensorInfo permuted_weights = weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_weights_shape).set_data_layout(DataLayout::NCHW);
const TensorInfo permuted_output = output->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_output_shape).set_data_layout(DataLayout::NCHW);
ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(&permuted_input, &permuted_weights, biases, &permuted_output, conv_info, depth_multiplier, act_info, gpu_target));
}
else if(is_nhwc)
{
if(needs_weights_reshape)
{
auto reshaped_weights_shape = arm_compute::misc::shape_calculator::compute_reshaped_depthwise_weights_shape(*weights, info);
ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NHWCKernel::validate(input, &weights->clone()->set_tensor_shape(reshaped_weights_shape), biases, output, conv_info, depth_multiplier,
act_info));
}
ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NHWCKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info));
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, gpu_target));
}
return Status{};
}
void CLDepthwiseConvolutionLayer3x3::run()
{
prepare();
_memory_group.acquire();
if(_needs_permute)
{
_permute_input_to_nchw.run();
}
CLScheduler::get().enqueue(_border_handler);
CLScheduler::get().enqueue(*_kernel);
if(_needs_permute)
{
_permute_output_to_nhwc.run();
}
_memory_group.release();
}
void CLDepthwiseConvolutionLayer3x3::prepare()
{
if(!_is_prepared)
{
if(_needs_permute)
{
ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
_permuted_weights.allocator()->allocate();
_permute_weights_to_nchw.run();
_original_weights->mark_as_unused();
}
if(_needs_weights_reshape)
{
ARM_COMPUTE_ERROR_ON(_needs_permute);
ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
_permuted_weights.allocator()->allocate();
CLScheduler::get().enqueue(_reshape_weights);
_original_weights->mark_as_unused();
}
_is_prepared = true;
}
}
CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayer()
: _im2col_kernel(), _weights_reshape_kernel(), _v2mm_kernel(), _vector_to_tensor_kernel(), _output_stage_kernel(), _activationlayer_function(), _v2mm_input_fill_border(), _v2mm_weights_fill_border(),
_input_reshaped(), _weights_reshaped(), _v2mm_output(), _output_reshaped(), _is_prepared(false), _is_quantized(false), _is_activationlayer_enabled(false), _original_weights(nullptr),
_optimised_function(nullptr)
{
}
void CLDepthwiseConvolutionLayer::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier, const ActivationLayerInfo &act_info)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
const size_t idx_w = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH);
const size_t idx_h = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT);
const bool can_run_optimised_3x3_kernel = (weights->info()->dimension(idx_w) == 3) && (weights->info()->dimension(idx_h) == 3);
if(bool(can_run_optimised_3x3_kernel))
{
auto f = arm_compute::support::cpp14::make_unique<CLDepthwiseConvolutionLayer3x3>();
f->configure(input, weights, biases, output, conv_info, depth_multiplier, act_info);
_optimised_function = std::move(f);
}
else
{
const size_t idx_c = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::CHANNEL);
const size_t weights_w = weights->info()->dimension(idx_w);
const size_t weights_h = weights->info()->dimension(idx_h);
const size_t weights_z = weights->info()->dimension(idx_c);
_is_prepared = false;
_original_weights = weights;
_is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
bool append_bias = (biases != nullptr) && !_is_quantized;
const GPUTarget gpu_target = CLScheduler::get().target();
// Calculate output shape
TensorShape output_shape = shape_calculator::compute_depthwise_convolution_shape(*input->info(), *weights->info(), conv_info, depth_multiplier);
// Output auto inizialitation if not yet initialized
auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape));
ARM_COMPUTE_ERROR_ON_MISMATCHING_DIMENSIONS(output->info()->tensor_shape(), output_shape);
// Output width and height
const unsigned int conv_w = output_shape[idx_w];
const unsigned int conv_h = output_shape[idx_h];
// Set up intermediate tensors
const size_t patch_size = weights_w * weights_h + ((append_bias) ? 1 : 0);
const size_t conv_size = conv_w * conv_h;
// Im2Col configuration
TensorShape shape_im2col = input->info()->tensor_shape();
shape_im2col.set(0, patch_size);
shape_im2col.set(1, conv_size);
shape_im2col.set(2, weights_z);
_input_reshaped.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col));
_im2col_kernel.set_target(gpu_target);
_im2col_kernel.configure(input, &_input_reshaped, Size2D(weights_w, weights_h), conv_info, append_bias, depth_multiplier);
CLScheduler::get().tune_kernel_static(_im2col_kernel);
// Weights reshape configuration
const TensorShape shape_weights_reshape(patch_size, weights_z);
_weights_reshaped.allocator()->init(weights->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_weights_reshape));
_weights_reshape_kernel.configure(weights, &_weights_reshaped, append_bias ? biases : nullptr);
// GEMV configuration
DataType v2mm_dt = (input->info()->data_type() == DataType::QASYMM8) ? DataType::S32 : input->info()->data_type();
TensorShape shape_v2mm_out = input->info()->tensor_shape();
shape_v2mm_out.set(0, conv_size * weights_z);
shape_v2mm_out.set(1, 1);
shape_v2mm_out.set(2, 1);
_v2mm_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_data_type(v2mm_dt).set_tensor_shape(shape_v2mm_out));
_v2mm_kernel.set_target(gpu_target);
_v2mm_kernel.configure(&_input_reshaped, &_weights_reshaped, &_v2mm_output);
CLScheduler::get().tune_kernel_static(_v2mm_kernel);
_output_reshaped.allocator()->init(_v2mm_output.info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape));
_vector_to_tensor_kernel.configure(&_v2mm_output, (_is_quantized) ? &_output_reshaped : output, conv_w, conv_h);
// Output staged configuration
if(_is_quantized)
{
const QuantizationInfo output_quant_info = (output->info()->total_size() == 0) ? input->info()->quantization_info() : output->info()->quantization_info();
float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output_quant_info.scale;
int output_multiplier, output_shift;
quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
_output_stage_kernel.configure(&_output_reshaped, biases, output, output_multiplier, output_shift, output_quant_info.offset);
_output_reshaped.allocator()->allocate();
}
// Fill borders on inputs
PixelValue zero_in(static_cast<int32_t>(0));
PixelValue zero_w(static_cast<int32_t>(0));
if(_is_quantized)
{
zero_in = PixelValue(static_cast<int32_t>(input->info()->quantization_info().offset));
zero_w = PixelValue(static_cast<int32_t>(weights->info()->quantization_info().offset));
}
BorderSize border_size = _v2mm_kernel.border_size();
_v2mm_input_fill_border.configure(&_input_reshaped, border_size, BorderMode::CONSTANT, zero_in);
border_size.bottom = 0;
_v2mm_weights_fill_border.configure(&_weights_reshaped, border_size, BorderMode::CONSTANT, zero_w);
// Allocate intermediate tensors
_input_reshaped.allocator()->allocate();
_v2mm_output.allocator()->allocate();
//Configure Activation Layer
_is_activationlayer_enabled = act_info.enabled();
if(_is_activationlayer_enabled)
{
_activationlayer_function.configure(output, nullptr, act_info);
}
}
}
Status CLDepthwiseConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier, const ActivationLayerInfo &act_info)
{
const size_t idx_w = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
const size_t idx_h = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);
const bool can_run_optimised_3x3_kernel = (weights->dimension(idx_w) == 3) && (weights->dimension(idx_h) == 3);
if(can_run_optimised_3x3_kernel)
{
const size_t idx_c = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_RETURN_ERROR_ON((input->dimension(idx_c) * depth_multiplier) != weights->dimension(idx_c));
const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type());
const bool append_bias = (biases != nullptr) && !is_quantized;
const TensorShape output_shape = shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier);
const size_t weights_w = weights->dimension(idx_w);
const size_t weights_h = weights->dimension(idx_h);
const size_t weights_z = weights->dimension(idx_c);
const unsigned int conv_w = output_shape[idx_w];
const unsigned int conv_h = output_shape[idx_h];
const size_t patch_size = weights_w * weights_h + ((append_bias) ? 1 : 0);
const size_t conv_size = conv_w * conv_h;
TensorShape shape_im2col = input->tensor_shape();
shape_im2col.set(0, patch_size);
shape_im2col.set(1, conv_size);
shape_im2col.set(2, weights_z);
TensorInfo input_reshaped(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col));
ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseIm2ColKernel::validate(input, &input_reshaped, Size2D(weights_w, weights_h), conv_info, append_bias, depth_multiplier));
const TensorShape shape_weights_reshape(patch_size, weights_z);
TensorInfo weights_reshaped(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_weights_reshape));
ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayerReshapeWeightsGenericKernel::validate(weights, &weights_reshaped, append_bias ? biases : nullptr));
DataType v2mm_dt = (input->data_type() == DataType::QASYMM8) ? DataType::S32 : input->data_type();
TensorShape shape_v2mm_out = input->tensor_shape();
shape_v2mm_out.set(0, conv_size * weights_z);
shape_v2mm_out.set(1, 1);
shape_v2mm_out.set(2, 1);
TensorInfo v2mm_output(input->clone()->set_is_resizable(true).reset_padding().set_data_type(v2mm_dt).set_tensor_shape(shape_v2mm_out));
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMMatrixVectorMultiplyKernel::validate(&input_reshaped, &weights_reshaped, &v2mm_output));
TensorInfo output_reshaped(v2mm_output.clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape));
ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseVectorToTensorKernel::validate(&v2mm_output, (is_quantized) ? &output_reshaped : output, conv_w, conv_h));
if(is_quantized)
{
ARM_COMPUTE_RETURN_ON_ERROR(CLDirectConvolutionLayerOutputStageKernel::validate(&output_reshaped, biases, output));
}
// Validate Activation Layer
if(act_info.enabled())
{
ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(output, nullptr, act_info));
}
}
else
{
CLDepthwiseConvolutionLayer3x3::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info);
}
return Status{};
}
void CLDepthwiseConvolutionLayer::run()
{
prepare();
if(_optimised_function != nullptr)
{
_optimised_function->run();
}
else
{
CLScheduler::get().enqueue(_im2col_kernel);
CLScheduler::get().enqueue(_v2mm_input_fill_border);
CLScheduler::get().enqueue(_v2mm_kernel);
CLScheduler::get().enqueue(_vector_to_tensor_kernel);
if(_is_quantized)
{
CLScheduler::get().enqueue(_output_stage_kernel);
}
if(_is_activationlayer_enabled)
{
_activationlayer_function.run();
}
}
}
void CLDepthwiseConvolutionLayer::prepare()
{
if(_optimised_function != nullptr)
{
_optimised_function->prepare();
}
else
{
if(!_is_prepared)
{
ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
// Run weights reshaping and mark original weights tensor as unused
_weights_reshaped.allocator()->allocate();
CLScheduler::get().enqueue(_weights_reshape_kernel);
CLScheduler::get().enqueue(_v2mm_weights_fill_border);
_original_weights->mark_as_unused();
CLScheduler::get().queue().finish();
_is_prepared = true;
}
}
}
} // namespace arm_compute