blob: f1cbf2af63d856722c2dc897e5c51d0e4e3b7d36 [file] [log] [blame]
/*
* Copyright (c) 2017-2020 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_NEDIRECTCONVOLUTIONDETAIL_H
#define ARM_COMPUTE_NEDIRECTCONVOLUTIONDETAIL_H
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/NEON/NEFixedPoint.h"
#include "arm_compute/core/NEON/wrapper/wrapper.h"
#include "arm_compute/core/utils/misc/Requires.h"
#include <arm_neon.h>
namespace arm_compute
{
namespace detail
{
/** Loads a 3x3 matrix as a row (float).
*
* @param[in] ptr Pointer to a float 3x3 matrix.
* @param[in] weights_offset (Optional) Weights quantization offset.
*
* @return The loaded matrix.
*/
inline float32x4x3_t load_matrix_row(const float *ptr, int weights_offset = 0)
{
ARM_COMPUTE_UNUSED(weights_offset);
const float32x4x3_t r =
{
{
vld1q_dup_f32(ptr),
vld1q_dup_f32(1 + ptr),
vld1q_dup_f32(2 + ptr)
}
};
return r;
}
/** Loads a 3x3 matrix as a row (uint8_t/int8_t).
*
* @param[in] ptr Pointer to a uint8_t/int8_t 3x3 matrix.
* @param[in] weights_offset (Optional) Weights quantization offset.
*
* @return The loaded matrix.
*/
template < typename T, REQUIRES_TA(std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value) >
inline int32x4x3_t load_matrix_row(const T *ptr, int weights_offset = 0)
{
const int32x4_t v_weights_offset = vdupq_n_s32(weights_offset);
/* ptr is a pointer to a row in a 3x3 matrix, the function returns 3 vectors holding exactly the same value in all lanes:
r.val[0] contains the first element, r.val[1] the second element and r.val[2] the third element (in all lanes) */
int32x4x3_t r =
{
{
vaddq_s32(v_weights_offset, vdupq_n_s32(*ptr)),
vaddq_s32(v_weights_offset, vdupq_n_s32(*(ptr + 1))),
vaddq_s32(v_weights_offset, vdupq_n_s32(*(ptr + 2)))
}
};
return r;
}
/** Perform a 3x3 convolution for 4 consecutive elements on float32 when dilation.x() or dilation.y() is not 1.
*
* @param[in] in_top Pointer to the first row of the input.
* @param[in] in_mid Pointer to the second row of the input.
* @param[in] in_low Pointer to the third row of the input.
* @param[in] m0 First row of the filter.
* @param[in] m1 Second row of the filter.
* @param[in] m2 Third row of the filter.
* @param[in] dilation_x Dilation, in elements across x.
* @param[in] input_offset (Optional) Input quantization offset.
*
*/
inline float32x4_t single_convolve_3x3_dilation(const float *in_top, const float *in_mid, const float *in_low,
const float32x4x3_t &m0, const float32x4x3_t &m1, const float32x4x3_t &m2,
const size_t dilation_x, int input_offset)
{
ARM_COMPUTE_UNUSED(input_offset);
const float32x4x3_t vtop =
{
{
vld1q_f32(in_top),
vld1q_f32(in_top + dilation_x),
vld1q_f32(in_top + 2 * dilation_x)
}
};
const float32x4x3_t vmid =
{
{
vld1q_f32(in_mid),
vld1q_f32(in_mid + dilation_x),
vld1q_f32(in_mid + 2 * dilation_x)
}
};
const float32x4x3_t vlow =
{
{
vld1q_f32(in_low),
vld1q_f32(in_low + dilation_x),
vld1q_f32(in_low + 2 * dilation_x)
}
};
float32x4_t out = vmulq_f32(vtop.val[0], m0.val[0]);
out = vmlaq_f32(out, vtop.val[1], m0.val[1]);
out = vmlaq_f32(out, vtop.val[2], m0.val[2]);
out = vmlaq_f32(out, vmid.val[0], m1.val[0]);
out = vmlaq_f32(out, vmid.val[1], m1.val[1]);
out = vmlaq_f32(out, vmid.val[2], m1.val[2]);
out = vmlaq_f32(out, vlow.val[0], m2.val[0]);
out = vmlaq_f32(out, vlow.val[1], m2.val[1]);
out = vmlaq_f32(out, vlow.val[2], m2.val[2]);
return out;
}
/** Perform a 3x3 convolution for 8 consecutive elements on float32 when dilation.x() or dilation.y() is not 1.
*
* @param[in] in_top Pointer to the first row of the input.
* @param[in] in_mid Pointer to the second row of the input.
* @param[in] in_low Pointer to the third row of the input.
* @param[in] m0 First row of the filter.
* @param[in] m1 Second row of the filter.
* @param[in] m2 Third row of the filter.
* @param[in] dilation_x Dilation, in elements across x.
* @param[in] stridex Stride value in elements across x.
* @param[in] input_offset (Optional) Input quantization offset.
*
*/
inline float32x4x2_t convolve_3x3_dilation(const float *in_top, const float *in_mid, const float *in_low,
const float32x4x3_t &m0, const float32x4x3_t &m1, const float32x4x3_t &m2,
const size_t dilation_x, unsigned int stridex, int input_offset = 0)
{
ARM_COMPUTE_ERROR_ON(stridex > 3);
float32x4x2_t out =
{
{
single_convolve_3x3_dilation(in_top, in_mid, in_low, m0, m1, m2, dilation_x, input_offset),
single_convolve_3x3_dilation(in_top + 4, in_mid + 4, in_low + 4, m0, m1, m2, dilation_x, input_offset)
}
};
if(stridex == 2)
{
out.val[0] = vsetq_lane_f32(vgetq_lane_f32(out.val[0], 2), out.val[0], 1);
out.val[0] = vsetq_lane_f32(vgetq_lane_f32(out.val[1], 0), out.val[0], 2);
out.val[0] = vsetq_lane_f32(vgetq_lane_f32(out.val[1], 2), out.val[0], 3);
}
else if(stridex == 3)
{
out.val[0] = vsetq_lane_f32(vgetq_lane_f32(out.val[0], 3), out.val[0], 1);
}
return out;
}
/** Perform a convolve3x3 on float32.
*
* @param[in] in_top Pointer to the first row of the input.
* @param[in] in_mid Pointer to the second row of the input.
* @param[in] in_low Pointer to the third row of the input.
* @param[in] m0 First row of the filter.
* @param[in] m1 Second row of the filter.
* @param[in] m2 Third row of the filter.
* @param[in] stridex Stride value in elements across x.
* @param[in] input_offset (Optional) Input quantization offset.
*
*/
float32x4x2_t convolve_3x3(const float *in_top, const float *in_mid, const float *in_low,
const float32x4x3_t &m0, const float32x4x3_t &m1, const float32x4x3_t &m2,
unsigned int stridex, int input_offset = 0);
inline float32x4x2_t convolve_3x3(const float *in_top, const float *in_mid, const float *in_low,
const float32x4x3_t &m0, const float32x4x3_t &m1, const float32x4x3_t &m2,
unsigned int stridex, int input_offset)
{
ARM_COMPUTE_UNUSED(input_offset);
ARM_COMPUTE_ERROR_ON(stridex > 3);
float32x4x2_t out =
{
{
vdupq_n_f32(0.f),
vdupq_n_f32(0.f)
}
};
if(stridex == 2)
{
const float32x4x2_t vtop = vld2q_f32(in_top);
const float32x4x2_t vmid = vld2q_f32(in_mid);
const float32x4x2_t vlow = vld2q_f32(in_low);
const float32x4_t vtop_end = vld1q_f32(in_top + 8);
const float32x4_t vmid_end = vld1q_f32(in_mid + 8);
const float32x4_t vlow_end = vld1q_f32(in_low + 8);
out.val[0] = vmulq_f32(vtop.val[0], m0.val[0]);
out.val[0] = vmlaq_f32(out.val[0], vtop.val[1], m0.val[1]);
out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vtop.val[0], vtop_end, 1), m0.val[2]);
out.val[0] = vmlaq_f32(out.val[0], vmid.val[0], m1.val[0]);
out.val[0] = vmlaq_f32(out.val[0], vmid.val[1], m1.val[1]);
out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vmid.val[0], vmid_end, 1), m1.val[2]);
out.val[0] = vmlaq_f32(out.val[0], vlow.val[0], m2.val[0]);
out.val[0] = vmlaq_f32(out.val[0], vlow.val[1], m2.val[1]);
out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vlow.val[0], vlow_end, 1), m2.val[2]);
}
else
{
const float32x4x3_t vtop =
{
{
vld1q_f32(in_top),
vld1q_f32(in_top + 4),
vld1q_f32(in_top + 8)
}
};
const float32x4x3_t vmid =
{
{
vld1q_f32(in_mid),
vld1q_f32(in_mid + 4),
vld1q_f32(in_mid + 8)
}
};
const float32x4x3_t vlow =
{
{
vld1q_f32(in_low),
vld1q_f32(in_low + 4),
vld1q_f32(in_low + 8)
}
};
out.val[0] = vmulq_f32(vtop.val[0], m0.val[0]);
out.val[1] = vmulq_f32(vtop.val[1], m0.val[0]);
out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vtop.val[0], vtop.val[1], 1), m0.val[1]);
out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vtop.val[0], vtop.val[1], 2), m0.val[2]);
out.val[0] = vmlaq_f32(out.val[0], vmid.val[0], m1.val[0]);
out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vmid.val[0], vmid.val[1], 1), m1.val[1]);
out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vmid.val[0], vmid.val[1], 2), m1.val[2]);
out.val[0] = vmlaq_f32(out.val[0], vlow.val[0], m2.val[0]);
out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vlow.val[0], vlow.val[1], 1), m2.val[1]);
out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vlow.val[0], vlow.val[1], 2), m2.val[2]);
out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vtop.val[1], vtop.val[2], 1), m0.val[1]);
out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vtop.val[1], vtop.val[2], 2), m0.val[2]);
out.val[1] = vmlaq_f32(out.val[1], vmid.val[1], m1.val[0]);
out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vmid.val[1], vmid.val[2], 1), m1.val[1]);
out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vmid.val[1], vmid.val[2], 2), m1.val[2]);
out.val[1] = vmlaq_f32(out.val[1], vlow.val[1], m2.val[0]);
out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vlow.val[1], vlow.val[2], 1), m2.val[1]);
out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vlow.val[1], vlow.val[2], 2), m2.val[2]);
if(stridex == 3)
{
out.val[0] = vsetq_lane_f32(vgetq_lane_f32(out.val[0], 3), out.val[0], 1);
}
}
return out;
}
/** Perform a 3x3 convolution for 4 consecutive 8-bit elements when dilation.x() or dilation.y() is not 1.
*
* @param[in] in_top Pointer to the first row of the input.
* @param[in] in_mid Pointer to the second row of the input.
* @param[in] in_low Pointer to the third row of the input.
* @param[in] m0 First row of the filter.
* @param[in] m1 Second row of the filter.
* @param[in] m2 Third row of the filter.
* @param[in] dilation_x Dilation, in elements across x.
* @param[in] input_offset Input quantization offset.
*
*/
template < typename T, REQUIRES_TA(std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value) >
inline int32x4_t single_convolve_3x3_dilation(const T *in_top, const T *in_mid, const T *in_low,
const int32x4x3_t &m0, const int32x4x3_t &m1, const int32x4x3_t &m2,
size_t dilation_x, int32_t input_offset)
{
using VectorType = typename std::conditional<std::is_same<T, uint8_t>::value, uint8x8x3_t, int8x8x3_t>::type;
using OutputTagType = typename wrapper::traits::neon_bitvector_tag_t<int32_t, wrapper::traits::BitWidth::W128>;
const int32x4_t v_input_offset = wrapper::vdup_n(input_offset, OutputTagType{});
const VectorType vtop =
{
{
wrapper::vload(in_top),
wrapper::vload(in_top + dilation_x),
wrapper::vload(in_top + 2 * dilation_x)
}
};
const VectorType vmid =
{
{
wrapper::vload(in_mid),
wrapper::vload(in_mid + dilation_x),
wrapper::vload(in_mid + 2 * dilation_x)
}
};
const VectorType vlow =
{
{
wrapper::vload(in_low),
wrapper::vload(in_low + dilation_x),
wrapper::vload(in_low + 2 * dilation_x)
}
};
const int32x4x3_t vtop_s32 =
{
{
wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vtop.val[0])))),
wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vtop.val[1])))),
wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vtop.val[2])))),
}
};
const int32x4x3_t vmid_s32 =
{
{
wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vmid.val[0])))),
wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vmid.val[1])))),
wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vmid.val[2])))),
}
};
const int32x4x3_t vlow_s32 =
{
{
wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vlow.val[0])))),
wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vlow.val[1])))),
wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vlow.val[2])))),
}
};
int32x4_t out = wrapper::vmul(vtop_s32.val[0], m0.val[0]);
out = wrapper::vmla(out, vtop_s32.val[1], m0.val[1]);
out = wrapper::vmla(out, vtop_s32.val[2], m0.val[2]);
out = wrapper::vmla(out, vmid_s32.val[0], m1.val[0]);
out = wrapper::vmla(out, vmid_s32.val[1], m1.val[1]);
out = wrapper::vmla(out, vmid_s32.val[2], m1.val[2]);
out = wrapper::vmla(out, vlow_s32.val[0], m2.val[0]);
out = wrapper::vmla(out, vlow_s32.val[1], m2.val[1]);
out = wrapper::vmla(out, vlow_s32.val[2], m2.val[2]);
return out;
}
/** Perform a 3x3 convolution for 4 consecutive 8-bit elements when dilation.x() or dilation.y() is not 1.
*
* @param[in] in_top Pointer to the first row of the input.
* @param[in] in_mid Pointer to the second row of the input.
* @param[in] in_low Pointer to the third row of the input.
* @param[in] m0 First row of the filter.
* @param[in] m1 Second row of the filter.
* @param[in] m2 Third row of the filter.
* @param[in] dilation_x Dilation, in elements across x.
* @param[in] stridex Stride value in elements across x.
* @param[in] input_offset Input quantization offset.
*
*/
template < typename T, REQUIRES_TA(std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value) >
inline int32x4x2_t convolve_3x3_dilation(const T *in_top, const T *in_mid, const T *in_low, const int32x4x3_t &m0, const int32x4x3_t &m1, const int32x4x3_t &m2,
const size_t dilation_x, unsigned int stridex, int input_offset)
{
ARM_COMPUTE_ERROR_ON(stridex > 3);
int32x4x2_t out =
{
{
single_convolve_3x3_dilation(in_top, in_mid, in_low, m0, m1, m2, dilation_x, input_offset),
single_convolve_3x3_dilation(in_top + 4, in_mid + 4, in_low + 4, m0, m1, m2, dilation_x, input_offset)
}
};
if(stridex == 2)
{
out.val[0] = wrapper::vsetlane(wrapper::vgetlane(out.val[0], 2), out.val[0], 1);
out.val[0] = wrapper::vsetlane(wrapper::vgetlane(out.val[1], 0), out.val[0], 2);
out.val[0] = wrapper::vsetlane(wrapper::vgetlane(out.val[1], 2), out.val[0], 3);
}
else if(stridex == 3)
{
out.val[0] = wrapper::vsetlane(wrapper::vgetlane(out.val[0], 3), out.val[0], 1);
}
return out;
}
/** Perform a convolve3x3 on 8-bit elements
*
* @param[in] in_top Pointer to the first row of the input.
* @param[in] in_mid Pointer to the second row of the input.
* @param[in] in_low Pointer to the third row of the input.
* @param[in] m0 First row of the filter.
* @param[in] m1 Second row of the filter.
* @param[in] m2 Third row of the filter.
* @param[in] stridex Stride value in elements across x.
* @param[in] input_offset Input quantization offset.
*
*/
template < typename T, REQUIRES_TA(std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value) >
int32x4x2_t convolve_3x3(const T *in_top, const T *in_mid, const T *in_low,
const int32x4x3_t &m0, const int32x4x3_t &m1, const int32x4x3_t &m2,
unsigned int stridex, int32_t input_offset)
{
ARM_COMPUTE_ERROR_ON(stridex > 3);
using VectorType = typename std::conditional<std::is_same<T, uint8_t>::value, uint8x8x2_t, int8x8x2_t>::type;
using OutputTagType = typename wrapper::traits::neon_bitvector_tag_t<int32_t, wrapper::traits::BitWidth::W128>;
const int32x4_t v_input_offset = wrapper::vdup_n(input_offset, OutputTagType{});
const VectorType vtop =
{
{
wrapper::vload(in_top),
wrapper::vload(in_top + 8)
}
};
const VectorType vmid =
{
{
wrapper::vload(in_mid),
wrapper::vload(in_mid + 8)
}
};
const VectorType vlow =
{
{
wrapper::vload(in_low),
wrapper::vload(in_low + 8)
}
};
const int32x4x3_t vtop_s32 =
{
{
wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vtop.val[0])))),
wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgethigh(wrapper::vmovl(vtop.val[0])))),
wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vtop.val[1])))),
}
};
const int32x4x3_t vmid_s32 =
{
{
wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vmid.val[0])))),
wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgethigh(wrapper::vmovl(vmid.val[0])))),
wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vmid.val[1])))),
}
};
const int32x4x3_t vlow_s32 =
{
{
wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vlow.val[0])))),
wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgethigh(wrapper::vmovl(vlow.val[0])))),
wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vlow.val[1])))),
}
};
int32x4x2_t out
{
{
wrapper::vdup_n(static_cast<int32_t>(0), OutputTagType{}),
wrapper::vdup_n(static_cast<int32_t>(0), OutputTagType{}),
}
};
// 0
out.val[0] = wrapper::vmla(out.val[0], vtop_s32.val[0], m0.val[0]);
out.val[0] = wrapper::vmla(out.val[0], wrapper::vext_1(vtop_s32.val[0], vtop_s32.val[1]), m0.val[1]);
out.val[0] = wrapper::vmla(out.val[0], wrapper::vext_2(vtop_s32.val[0], vtop_s32.val[1]), m0.val[2]);
out.val[0] = wrapper::vmla(out.val[0], vmid_s32.val[0], m1.val[0]);
out.val[0] = wrapper::vmla(out.val[0], wrapper::vext_1(vmid_s32.val[0], vmid_s32.val[1]), m1.val[1]);
out.val[0] = wrapper::vmla(out.val[0], wrapper::vext_2(vmid_s32.val[0], vmid_s32.val[1]), m1.val[2]);
out.val[0] = wrapper::vmla(out.val[0], vlow_s32.val[0], m2.val[0]);
out.val[0] = wrapper::vmla(out.val[0], wrapper::vext_1(vlow_s32.val[0], vlow_s32.val[1]), m2.val[1]);
out.val[0] = wrapper::vmla(out.val[0], wrapper::vext_2(vlow_s32.val[0], vlow_s32.val[1]), m2.val[2]);
// 1
out.val[1] = wrapper::vmla(out.val[1], vtop_s32.val[1], m0.val[0]);
out.val[1] = wrapper::vmla(out.val[1], wrapper::vext_1(vtop_s32.val[1], vtop_s32.val[2]), m0.val[1]);
out.val[1] = wrapper::vmla(out.val[1], wrapper::vext_2(vtop_s32.val[1], vtop_s32.val[2]), m0.val[2]);
out.val[1] = wrapper::vmla(out.val[1], vmid_s32.val[1], m1.val[0]);
out.val[1] = wrapper::vmla(out.val[1], wrapper::vext_1(vmid_s32.val[1], vmid_s32.val[2]), m1.val[1]);
out.val[1] = wrapper::vmla(out.val[1], wrapper::vext_2(vmid_s32.val[1], vmid_s32.val[2]), m1.val[2]);
out.val[1] = wrapper::vmla(out.val[1], vlow_s32.val[1], m2.val[0]);
out.val[1] = wrapper::vmla(out.val[1], wrapper::vext_1(vlow_s32.val[1], vlow_s32.val[2]), m2.val[1]);
out.val[1] = wrapper::vmla(out.val[1], wrapper::vext_2(vlow_s32.val[1], vlow_s32.val[2]), m2.val[2]);
if(stridex == 2)
{
out.val[0] = wrapper::vsetlane(wrapper::vgetlane(out.val[0], 2), out.val[0], 1);
out.val[0] = wrapper::vsetlane(wrapper::vgetlane(out.val[1], 0), out.val[0], 2);
out.val[0] = wrapper::vsetlane(wrapper::vgetlane(out.val[1], 2), out.val[0], 3);
}
else if(stridex == 3)
{
out.val[0] = wrapper::vsetlane(wrapper::vgetlane(out.val[0], 3), out.val[0], 1);
}
return out;
}
/** Stores a float32x4x2_t array into a memory location.
*
* @param[in] buffer Pointer to the memory location where the values will be stored.
* @param[in] values Values that will be stored.
*
*/
template <unsigned int stridex>
void store_results(float *buffer, const float32x4x2_t &values);
template <>
inline void store_results<1>(float *buffer, const float32x4x2_t &values)
{
vst1q_f32(buffer, values.val[0]);
vst1q_f32(buffer + 4, values.val[1]);
}
template <>
inline void store_results<2>(float *buffer, const float32x4x2_t &values)
{
vst1q_f32(buffer, values.val[0]);
}
template <>
inline void store_results<3>(float *buffer, const float32x4x2_t &values)
{
vst1_f32(buffer, vget_low_f32(values.val[0]));
}
/** Stores a uint32_t array into a memory location.
*
* @param[in] buffer Pointer to the memory location where the values will be stored.
* @param[in] values Values that will be stored.
*
*/
template <unsigned int stridex>
void store_results(int32_t *buffer, const int32x4x2_t &values);
template <>
inline void store_results<1>(int32_t *buffer, const int32x4x2_t &values)
{
vst1q_s32(buffer, values.val[0]);
vst1q_s32(buffer + 4, values.val[1]);
}
template <>
inline void store_results<2>(int32_t *buffer, const int32x4x2_t &values)
{
vst1q_s32(buffer, values.val[0]);
}
template <>
inline void store_results<3>(int32_t *buffer, const int32x4x2_t &values)
{
vst1_s32(buffer, vget_low_s32(values.val[0]));
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
/** Loads a 3x3 matrix as a row (float16_t).
*
* @param[in] ptr Pointer to a float 3x3 matrix.
*
* @return The loaded matrix.
*/
inline float16x8x3_t load_matrix_row(const float16_t *ptr, int weights_offset = 0)
{
ARM_COMPUTE_UNUSED(weights_offset);
/* ptr is a pointer to a row in a 3x3 matrix, the function returns 3 vectors holding exactly the same value in all lanes:
r.val[0] contains the first element, r.val[1] the second element and r.val[2] the third element (in all lanes) */
const float16x8x3_t r =
{
{
vld1q_dup_f16(ptr),
vld1q_dup_f16(1 + ptr),
vld1q_dup_f16(2 + ptr)
}
};
return r;
}
/** Perform a 3x3 convolution for 8 consecutive elements on float16 when dilation.x() or dilation.y() is not 1.
*
* @param[in] in_top Pointer to the first row of the input.
* @param[in] in_mid Pointer to the second row of the input.
* @param[in] in_low Pointer to the third row of the input.
* @param[in] m0 First row of the filter.
* @param[in] m1 Second row of the filter.
* @param[in] m2 Third row of the filter.
* @param[in] dilation_x Dilation, in elements across x.
* @param[in] input_offset (Optional)Input quantization offset.
*
*/
inline float16x8_t single_convolve_3x3_dilation(const float16_t *in_top, const float16_t *in_mid, const float16_t *in_low,
const float16x8x3_t &m0, const float16x8x3_t &m1, const float16x8x3_t &m2,
const size_t dilation_x, int input_offset = 0)
{
ARM_COMPUTE_UNUSED(input_offset);
const float16x8x3_t vtop =
{
{
vld1q_f16(in_top),
vld1q_f16(in_top + dilation_x),
vld1q_f16(in_top + 2 * dilation_x)
}
};
const float16x8x3_t vmid =
{
{
vld1q_f16(in_mid),
vld1q_f16(in_mid + dilation_x),
vld1q_f16(in_mid + 2 * dilation_x)
}
};
const float16x8x3_t vlow =
{
{
vld1q_f16(in_low),
vld1q_f16(in_low + dilation_x),
vld1q_f16(in_low + 2 * dilation_x)
}
};
float16x8_t out = vmulq_f16(vtop.val[0], m0.val[0]);
out = vaddq_f16(out, vmulq_f16(vtop.val[1], m0.val[1]));
out = vaddq_f16(out, vmulq_f16(vtop.val[2], m0.val[2]));
out = vaddq_f16(out, vmulq_f16(vmid.val[0], m1.val[0]));
out = vaddq_f16(out, vmulq_f16(vmid.val[1], m1.val[1]));
out = vaddq_f16(out, vmulq_f16(vmid.val[2], m1.val[2]));
out = vaddq_f16(out, vmulq_f16(vlow.val[0], m2.val[0]));
out = vaddq_f16(out, vmulq_f16(vlow.val[1], m2.val[1]));
out = vaddq_f16(out, vmulq_f16(vlow.val[2], m2.val[2]));
return out;
}
/** Perform a 3x3 convolution for 16 consecutive elements on float16 when dilation.x() or dilation.y() is not 1.
*
* @param[in] in_top Pointer to the first row of the input.
* @param[in] in_mid Pointer to the second row of the input.
* @param[in] in_low Pointer to the third row of the input.
* @param[in] m0 First row of the filter.
* @param[in] m1 Second row of the filter.
* @param[in] m2 Third row of the filter.
* @param[in] dilation_x Dilation, in elements across x.
* @param[in] stridex Stride value in elements across x.
* @param[in] input_offset (Optional) Input quantization offset.
*
*/
inline float16x8x2_t convolve_3x3_dilation(const float16_t *in_top, const float16_t *in_mid, const float16_t *in_low,
const float16x8x3_t &m0, const float16x8x3_t &m1, const float16x8x3_t &m2,
const size_t dilation_x, unsigned int stridex, int input_offset = 0)
{
float16x8x2_t out =
{
{
single_convolve_3x3_dilation(in_top, in_mid, in_low, m0, m1, m2, dilation_x, input_offset),
single_convolve_3x3_dilation(in_top + 8, in_mid + 8, in_low + 8, m0, m1, m2, dilation_x, input_offset)
}
};
if(stridex == 2)
{
out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[0], 2), out.val[0], 1);
out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[0], 4), out.val[0], 2);
out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[0], 6), out.val[0], 3);
out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[1], 0), out.val[0], 4);
out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[1], 2), out.val[0], 5);
out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[1], 4), out.val[0], 6);
out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[1], 6), out.val[0], 7);
}
else if(stridex == 3)
{
out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[0], 3), out.val[0], 1);
out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[0], 6), out.val[0], 2);
out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[1], 1), out.val[0], 3);
}
return out;
}
/** Perform a convolve3x3 on float16.
*
* @param[in] in_top Pointer to the first row of the input.
* @param[in] in_mid Pointer to the second row of the input.
* @param[in] in_low Pointer to the third row of the input.
* @param[in] m0 First row of the filter.
* @param[in] m1 Second row of the filter.
* @param[in] m2 Third row of the filter.
* @param[in] stridex Stride value in elements across x.
* @param[in] input_offset (Optional) Input quantization offset.
*
*/
inline float16x8x2_t convolve_3x3(const float16_t *in_top, const float16_t *in_mid, const float16_t *in_low,
const float16x8x3_t &m0, const float16x8x3_t &m1, const float16x8x3_t &m2,
unsigned int stridex, int input_offset = 0)
{
ARM_COMPUTE_UNUSED(input_offset);
float16x8x2_t out =
{
{
vdupq_n_f16(0),
vdupq_n_f16(0)
}
};
if(stridex == 2)
{
const float16x8x2_t vtop = vld2q_f16(in_top);
const float16x8x2_t vmid = vld2q_f16(in_mid);
const float16x8x2_t vlow = vld2q_f16(in_low);
const float16x8_t vtop_end = vld1q_f16(in_top + 16);
const float16x8_t vmid_end = vld1q_f16(in_mid + 16);
const float16x8_t vlow_end = vld1q_f16(in_low + 16);
out.val[0] = vmulq_f16(vtop.val[0], m0.val[0]);
out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vtop.val[1], m0.val[1]));
out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vextq_f16(vtop.val[0], vtop_end, 1), m0.val[2]));
out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vmid.val[0], m1.val[0]));
out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vmid.val[1], m1.val[1]));
out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vextq_f16(vmid.val[0], vmid_end, 1), m1.val[2]));
out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vlow.val[0], m2.val[0]));
out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vlow.val[1], m2.val[1]));
out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vextq_f16(vlow.val[0], vlow_end, 1), m2.val[2]));
}
else
{
const float16x8x3_t vtop =
{
{
vld1q_f16(in_top),
vld1q_f16(in_top + 8),
vld1q_f16(in_top + 16)
}
};
const float16x8x3_t vmid =
{
{
vld1q_f16(in_mid),
vld1q_f16(in_mid + 8),
vld1q_f16(in_mid + 16)
}
};
const float16x8x3_t vlow =
{
{
vld1q_f16(in_low),
vld1q_f16(in_low + 8),
vld1q_f16(in_low + 16)
}
};
out.val[0] = vmulq_f16(vtop.val[0], m0.val[0]);
out.val[1] = vmulq_f16(vtop.val[1], m0.val[0]);
out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vextq_f16(vtop.val[0], vtop.val[1], 1), m0.val[1]));
out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vextq_f16(vtop.val[0], vtop.val[1], 2), m0.val[2]));
out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vmid.val[0], m1.val[0]));
out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vextq_f16(vmid.val[0], vmid.val[1], 1), m1.val[1]));
out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vextq_f16(vmid.val[0], vmid.val[1], 2), m1.val[2]));
out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vlow.val[0], m2.val[0]));
out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vextq_f16(vlow.val[0], vlow.val[1], 1), m2.val[1]));
out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vextq_f16(vlow.val[0], vlow.val[1], 2), m2.val[2]));
out.val[1] = vaddq_f16(out.val[1], vmulq_f16(vextq_f16(vtop.val[1], vtop.val[2], 1), m0.val[1]));
out.val[1] = vaddq_f16(out.val[1], vmulq_f16(vextq_f16(vtop.val[1], vtop.val[2], 2), m0.val[2]));
out.val[1] = vaddq_f16(out.val[1], vmulq_f16(vmid.val[1], m1.val[0]));
out.val[1] = vaddq_f16(out.val[1], vmulq_f16(vextq_f16(vmid.val[1], vmid.val[2], 1), m1.val[1]));
out.val[1] = vaddq_f16(out.val[1], vmulq_f16(vextq_f16(vmid.val[1], vmid.val[2], 2), m1.val[2]));
out.val[1] = vaddq_f16(out.val[1], vmulq_f16(vlow.val[1], m2.val[0]));
out.val[1] = vaddq_f16(out.val[1], vmulq_f16(vextq_f16(vlow.val[1], vlow.val[2], 1), m2.val[1]));
out.val[1] = vaddq_f16(out.val[1], vmulq_f16(vextq_f16(vlow.val[1], vlow.val[2], 2), m2.val[2]));
if(stridex == 3)
{
out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[0], 3), out.val[0], 1);
out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[0], 6), out.val[0], 2);
out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[1], 1), out.val[0], 3);
}
}
return out;
}
/** Stores a float16x8x2_t array into a memory location.
*
* @param[in] buffer Pointer to the memory location where the values will be stored.
* @param[in] values Values that will be stored.
*
*/
template <unsigned int stridex>
void store_results(float16_t *buffer, const float16x8x2_t &values);
template <>
inline void store_results<1>(float16_t *buffer, const float16x8x2_t &values)
{
vst1q_f16(buffer, values.val[0]);
vst1q_f16(buffer + 8, values.val[1]);
}
template <>
inline void store_results<2>(float16_t *buffer, const float16x8x2_t &values)
{
vst1q_f16(buffer, values.val[0]);
}
template <>
inline void store_results<3>(float16_t *buffer, const float16x8x2_t &values)
{
vst1_f16(buffer, vget_low_f16(values.val[0]));
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
/** Get the number of elements processed on 3x3 convolution.
*
* @param[in] num_elems_written_per_iteration Number of elements written per iteration on 3x3 convolution.
* @param[in] stridex Stride value in elements across x.
*
* @return The number of elements processed.
*/
inline int get_input_num_elems_processed(unsigned int num_elems_written_per_iteration, unsigned int stridex)
{
switch(stridex)
{
case 1:
return num_elems_written_per_iteration;
case 2:
return num_elems_written_per_iteration << 1;
case 3:
return num_elems_written_per_iteration * 3;
default:
ARM_COMPUTE_ERROR("stridex not supported");
return 0;
}
}
}
} // namespace arm_compute
#endif /* ARM_COMPUTE_NEDIRECTCONVOLUTIONDETAIL_H */