blob: e1131d5573eb893fadbba10295a1a4e760946f2c [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#include "types.h"
/*
*The criteria for lost tracking is that the spatial gradient matrix has:
* - Determinant less than DETERMINANT_THR
* - or minimum eigenvalue is smaller then EIGENVALUE_THR
*
* The thresholds for the determinant and the minimum eigenvalue is
* defined by the OpenVX spec
*
* Note: Also lost tracking happens when the point tracked coordinate is outside
* the image coordinates
*
* https://www.khronos.org/registry/vx/specs/1.0/html/d0/d0c/group__group__vision__function__opticalflowpyrlk.html
*/
/* Internal Lucas-Kanade Keypoint struct */
typedef struct InternalKeypoint
{
float x; /**< The x coordinate. */
float y; /**< The y coordinate. */
float tracking_status; /**< A zero indicates a lost point. Initialized to 1 by corner detectors. */
float dummy;
} InternalKeypoint;
/** Threshold for the determinant. Used for lost tracking criteria */
#define DETERMINANT_THR 1.0e-07f
/** Thresholds for minimum eigenvalue. Used for lost tracking criteria */
#define EIGENVALUE_THR 1.0e-04f
/** Constants used for Lucas-Kanade Algorithm */
#define W_BITS (14)
#define FLT_SCALE (1.0f / (float)(1 << 20))
#define D0 ((float)(1 << W_BITS))
#define D1 (1.0f / (float)(1 << (W_BITS - 5)))
/** Initializes the internal new points array when the level of pyramid is NOT equal to max.
*
* @param[in,out] old_points_internal An array of internal key points that are defined at the old_images high resolution pyramid.
* @param[in,out] new_points_internal An array of internal key points that are defined at the new_images high resolution pyramid.
* @param[in] scale Scale factor to apply for the new_point coordinates.
*/
__kernel void init_level(
__global float4 *old_points_internal,
__global float4 *new_points_internal,
const float scale)
{
int idx = get_global_id(0);
// Get old and new keypoints
float4 old_point = old_points_internal[idx];
float4 new_point = new_points_internal[idx];
// Scale accordingly with the pyramid_scale
old_point.xy *= (float2)(2.0f);
new_point.xy *= (float2)(2.0f);
old_points_internal[idx] = old_point;
new_points_internal[idx] = new_point;
}
/** Initializes the internal new points array when the level of pyramid is equal to max.
*
* @param[in] old_points An array of key points that are defined at the old_images high resolution pyramid.
* @param[in,out] old_points_internal An array of internal key points that are defined at the old_images high resolution pyramid.
* @param[out] new_points_internal An array of internal key points that are defined at the new_images high resolution pyramid.
* @param[in] scale Scale factor to apply for the new_point coordinates.
*/
__kernel void init_level_max(
__global Keypoint *old_points,
__global InternalKeypoint *old_points_internal,
__global InternalKeypoint *new_points_internal,
const float scale)
{
int idx = get_global_id(0);
Keypoint old_point = old_points[idx];
// Get old keypoint to track
InternalKeypoint old_point_internal;
old_point_internal.x = old_point.x * scale;
old_point_internal.y = old_point.y * scale;
old_point_internal.tracking_status = 1.f;
// Store internal keypoints
old_points_internal[idx] = old_point_internal;
new_points_internal[idx] = old_point_internal;
}
/** Initializes the new_points array when the level of pyramid is equal to max and if use_initial_estimate = 1.
*
* @param[in] old_points An array of key points that are defined at the old_images high resolution pyramid.
* @param[in] new_points_estimates An array of estimate key points that are defined at the old_images high resolution pyramid.
* @param[in,out] old_points_internal An array of internal key points that are defined at the old_images high resolution pyramid.
* @param[out] new_points_internal An array of internal key points that are defined at the new_images high resolution pyramid.
* @param[in] scale Scale factor to apply for the new_point coordinates.
*/
__kernel void init_level_max_initial_estimate(
__global Keypoint *old_points,
__global Keypoint *new_points_estimates,
__global InternalKeypoint *old_points_internal,
__global InternalKeypoint *new_points_internal,
const float scale)
{
int idx = get_global_id(0);
Keypoint old_point = old_points[idx];
Keypoint new_point_estimate = new_points_estimates[idx];
InternalKeypoint old_point_internal;
InternalKeypoint new_point_internal;
// Get old keypoint to track
old_point_internal.x = old_point.x * scale;
old_point_internal.y = old_point.y * scale;
old_point_internal.tracking_status = 1.f;
// Get new keypoint to track
new_point_internal.x = new_point_estimate.x * scale;
new_point_internal.y = new_point_estimate.y * scale;
new_point_internal.tracking_status = new_point_estimate.tracking_status;
// Store internal keypoints
old_points_internal[idx] = old_point_internal;
new_points_internal[idx] = new_point_internal;
}
/** Truncates the coordinates stored in new_points array
*
* @param[in] new_points_internal An array of estimate key points that are defined at the new_images high resolution pyramid.
* @param[out] new_points An array of internal key points that are defined at the new_images high resolution pyramid.
*/
__kernel void finalize(
__global InternalKeypoint *new_points_internal,
__global Keypoint *new_points)
{
int idx = get_global_id(0);
// Load internal keypoint
InternalKeypoint new_point_internal = new_points_internal[idx];
// Calculate output point
Keypoint new_point;
new_point.x = round(new_point_internal.x);
new_point.y = round(new_point_internal.y);
new_point.tracking_status = new_point_internal.tracking_status;
// Store new point
new_points[idx] = new_point;
}
/** Computes A11, A12, A22, min_eig, ival, ixval and iyval at level 0th of the pyramid. These values will be used in step 1.
*
* @param[in] old_image_ptr Pointer to the input old image. Supported data types: U8
* @param[in] old_image_stride_x Stride of the input old image in X dimension (in bytes)
* @param[in] old_image_step_x old_image_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] old_image_stride_y Stride of the input old image in Y dimension (in bytes)
* @param[in] old_image_step_y old_image_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] old_image_offset_first_element_in_bytes The offset of the first element in the input old image
* @param[in] old_scharr_gx_ptr Pointer to the input scharr x image. Supported data types: S16
* @param[in] old_scharr_gx_stride_x Stride of the input scharr x image in X dimension (in bytes)
* @param[in] old_scharr_gx_step_x old_scharr_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] old_scharr_gx_stride_y Stride of the input scharr x image in Y dimension (in bytes)
* @param[in] old_scharr_gx_step_y old_scharr_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] old_scharr_gx_offset_first_element_in_bytes The offset of the first element in the input scharr x image
* @param[in] old_scharr_gy_ptr Pointer to the input scharr y image. Supported data types: S16
* @param[in] old_scharr_gy_stride_x Stride of the input scharr y image in X dimension (in bytes)
* @param[in] old_scharr_gy_step_x old_scharr_gy_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] old_scharr_gy_stride_y Stride of the input scharr y image in Y dimension (in bytes)
* @param[in] old_scharr_gy_step_y old_scharr_gy_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] old_scharr_gy_offset_first_element_in_bytes The offset of the first element in the input scharr y image
* @param[in] old_points An array of key points. Those key points are defined at the old_images high resolution pyramid
* @param[in, out] new_points An output array of key points. Those key points are defined at the new_images high resolution pyramid
* @param[out] coeff It stores | A11 | A12 | A22 | min_eig | for each keypoint
* @param[out] iold_val It stores | ival | ixval | iyval | dummy | for each point in the window centered on old_keypoint
* @param[in] window_dimension The size of the window on which to perform the algorithm
* @param[in] window_dimension_pow2 The squared size of the window on which to perform the algorithm
* @param[in] half_window The half size of the window on which to perform the algorithm
* @param[in] border_limits It stores the right border limit (width - window_dimension - 1, height - window_dimension - 1,)
* @param[in] eig_const 1.0f / (float)(2.0f * window_dimension * window_dimension)
* @param[in] level0 It is set to 1 if level 0 of the pyramid
*/
void __kernel lktracker_stage0(
IMAGE_DECLARATION(old_image),
IMAGE_DECLARATION(old_scharr_gx),
IMAGE_DECLARATION(old_scharr_gy),
__global float4 *old_points,
__global float4 *new_points,
__global float4 *coeff,
__global short4 *iold_val,
const int window_dimension,
const int window_dimension_pow2,
const int half_window,
const float3 border_limits,
const float eig_const,
const int level0)
{
int idx = get_global_id(0);
Image old_image = CONVERT_TO_IMAGE_STRUCT_NO_STEP(old_image);
Image old_scharr_gx = CONVERT_TO_IMAGE_STRUCT_NO_STEP(old_scharr_gx);
Image old_scharr_gy = CONVERT_TO_IMAGE_STRUCT_NO_STEP(old_scharr_gy);
// Get old keypoint
float2 old_keypoint = old_points[idx].xy - (float2)half_window;
// Get the floor value
float2 iold_keypoint = floor(old_keypoint);
// Check if using the window dimension we can go out of boundary in the following for loops. If so, invalidate the tracked point
if(any(iold_keypoint < border_limits.zz) || any(iold_keypoint >= border_limits.xy))
{
if(level0 == 1)
{
// Invalidate tracked point as we are at level 0
new_points[idx].s2 = 0.0f;
}
// Not valid coordinate. It sets min_eig to 0.0f
coeff[idx].s3 = 0.0f;
return;
}
// Compute weight for the bilinear interpolation
float2 ab = old_keypoint - iold_keypoint;
// Weight used for Bilinear-Interpolation on Scharr images
// w_scharr.s0 = (1.0f - ab.x) * (1.0f - ab.y)
// w_scharr.s1 = ab.x * (1.0f - ab.y)
// w_scharr.s2 = (1.0f - ab.x) * ab.y
// w_scharr.s3 = ab.x * ab.y
float4 w_scharr;
w_scharr.s3 = ab.x * ab.y;
w_scharr.s0 = w_scharr.s3 + 1.0f - ab.x - ab.y;
w_scharr.s12 = ab - (float2)w_scharr.s3;
// Weight used for Bilinear-Interpolation on Old and New images
// w.s0 = round(w_scharr.s0 * D0)
// w.s1 = round(w_scharr.s1 * D0)
// w.s2 = round(w_scharr.s2 * D0)
// w.s3 = w.s3 = D0 - w.s0 - w.s1 - w.s2
float4 w;
w = round(w_scharr * (float4)D0);
w.s3 = D0 - w.s0 - w.s1 - w.s2; // Added for matching VX implementation
// G.s0 = A11, G.s1 = A12, G.s2 = A22, G.s3 = min_eig
int4 iG = (int4)0;
// Window offset
int window_offset = idx * window_dimension_pow2;
// Compute Spatial Gradient Matrix G
for(ushort ky = 0; ky < window_dimension; ++ky)
{
int offset_y = iold_keypoint.y + ky;
for(ushort kx = 0; kx < window_dimension; ++kx)
{
int offset_x = iold_keypoint.x + kx;
float4 px;
// Load values from old_image for computing the bilinear interpolation
px = convert_float4((uchar4)(vload2(0, offset(&old_image, offset_x, offset_y)),
vload2(0, offset(&old_image, offset_x, offset_y + 1))));
// old_i.s0 = ival, old_i.s1 = ixval, old_i.s2 = iyval, old_i.s3 = dummy
float4 old_i;
// Compute bilinear interpolation (with D1 scale factor) for ival
old_i.s0 = dot(px, w) * D1;
// Load values from old_scharr_gx for computing the bilinear interpolation
px = convert_float4((short4)(vload2(0, (__global short *)offset(&old_scharr_gx, offset_x, offset_y)),
vload2(0, (__global short *)offset(&old_scharr_gx, offset_x, offset_y + 1))));
// Compute bilinear interpolation for ixval
old_i.s1 = dot(px, w_scharr);
// Load values from old_scharr_gy for computing the bilinear interpolation
px = convert_float4((short4)(vload2(0, (__global short *)offset(&old_scharr_gy, offset_x, offset_y)),
vload2(0, (__global short *)offset(&old_scharr_gy, offset_x, offset_y + 1))));
// Compute bilinear interpolation for iyval
old_i.s2 = dot(px, w_scharr);
// Rounding (it could be omitted. Used just for matching the VX implementation)
int4 iold = convert_int4(round(old_i));
// Accumulate values in the Spatial Gradient Matrix
iG.s0 += (int)(iold.s1 * iold.s1);
iG.s1 += (int)(iold.s1 * iold.s2);
iG.s2 += (int)(iold.s2 * iold.s2);
// Store ival, ixval and iyval
iold_val[window_offset + kx] = convert_short4(iold);
}
window_offset += window_dimension;
}
// Scale iA11, iA12 and iA22
float4 G = convert_float4(iG) * (float4)FLT_SCALE;
// Compute minimum eigen value
G.s3 = (float)(G.s2 + G.s0 - sqrt(pown(G.s0 - G.s2, 2) + 4.0f * G.s1 * G.s1)) * eig_const;
// Store A11. A11, A22 and min_eig
coeff[idx] = G;
}
/** Computes the motion vector for a given keypoint
*
* @param[in] new_image_ptr Pointer to the input new image. Supported data types: U8
* @param[in] new_image_stride_x Stride of the input new image in X dimension (in bytes)
* @param[in] new_image_step_x new_image_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] new_image_stride_y Stride of the input new image in Y dimension (in bytes)
* @param[in] new_image_step_y new_image_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] new_image_offset_first_element_in_bytes The offset of the first element in the input new image
* @param[in, out] new_points An output array of key points. Those key points are defined at the new_images high resolution pyramid
* @param[in] coeff The | A11 | A12 | A22 | min_eig | for each keypoint
* @param[in] iold_val The | ival | ixval | iyval | dummy | for each point in the window centered on old_keypoint
* @param[in] window_dimension The size of the window on which to perform the algorithm
* @param[in] window_dimension_pow2 The squared size of the window on which to perform the algorithm
* @param[in] half_window The half size of the window on which to perform the algorithm
* @param[in] num_iterations The maximum number of iterations
* @param[in] epsilon The value for terminating the algorithm.
* @param[in] border_limits It stores the right border limit (width - window_dimension - 1, height - window_dimension - 1,)
* @param[in] eig_const 1.0f / (float)(2.0f * window_dimension * window_dimension)
* @param[in] level0 It is set to 1 if level of pyramid = 0
* @param[in] term_iteration It is set to 1 if termination = VX_TERM_CRITERIA_ITERATIONS
* @param[in] term_epsilon It is set to 1 if termination = VX_TERM_CRITERIA_EPSILON
*/
void __kernel lktracker_stage1(
IMAGE_DECLARATION(new_image),
__global float4 *new_points,
__global float4 *coeff,
__global short4 *iold_val,
const int window_dimension,
const int window_dimension_pow2,
const int half_window,
const int num_iterations,
const float epsilon,
const float3 border_limits,
const float eig_const,
const int level0,
const int term_iteration,
const int term_epsilon)
{
int idx = get_global_id(0);
Image new_image = CONVERT_TO_IMAGE_STRUCT_NO_STEP(new_image);
// G.s0 = A11, G.s1 = A12, G.s2 = A22, G.s3 = min_eig
float4 G = coeff[idx];
// Determinant
float D = G.s0 * G.s2 - G.s1 * G.s1;
// Check if it is a good point to track
if(G.s3 < EIGENVALUE_THR || D < DETERMINANT_THR)
{
if(level0 == 1)
{
// Invalidate tracked point as we are at level 0
new_points[idx].s2 = 0;
}
return;
}
// Compute inverse
//D = native_recip(D);
D = 1.0 / D;
// Get new keypoint
float2 new_keypoint = new_points[idx].xy - (float)half_window;
// Get new point
float2 out_new_point = new_points[idx].xy;
// Keep delta obtained in the previous iteration
float2 prev_delta = (float2)0.0f;
int j = 0;
while(j < num_iterations)
{
// Get the floor value
float2 inew_keypoint = floor(new_keypoint);
// Check if using the window dimension we can go out of boundary in the following for loops. If so, invalidate the tracked point
if(any(inew_keypoint < border_limits.zz) || any(inew_keypoint >= border_limits.xy))
{
if(level0 == 1)
{
// Invalidate tracked point as we are at level 0
new_points[idx].s2 = 0.0f;
}
else
{
new_points[idx].xy = out_new_point;
}
return;
}
// Compute weight for the bilinear interpolation
float2 ab = new_keypoint - inew_keypoint;
// Weight used for Bilinear-Interpolation on Old and New images
// w.s0 = round((1.0f - ab.x) * (1.0f - ab.y) * D0)
// w.s1 = round(ab.x * (1.0f - ab.y) * D0)
// w.s2 = round((1.0f - ab.x) * ab.y * D0)
// w.s3 = D0 - w.s0 - w.s1 - w.s2
float4 w;
w.s3 = ab.x * ab.y;
w.s0 = w.s3 + 1.0f - ab.x - ab.y;
w.s12 = ab - (float2)w.s3;
w = round(w * (float4)D0);
w.s3 = D0 - w.s0 - w.s1 - w.s2;
// Mismatch vector
int2 ib = 0;
// Old val offset
int old_val_offset = idx * window_dimension_pow2;
for(int ky = 0; ky < window_dimension; ++ky)
{
for(int kx = 0; kx < window_dimension; ++kx)
{
// ival, ixval and iyval have been computed in the previous stage
int4 old_ival = convert_int4(iold_val[old_val_offset]);
// Load values from old_image for computing the bilinear interpolation
float4 px = convert_float4((uchar4)(vload2(0, offset(&new_image, inew_keypoint.x + kx, inew_keypoint.y + ky)),
vload2(0, offset(&new_image, inew_keypoint.x + kx, inew_keypoint.y + ky + 1))));
// Compute bilinear interpolation on new image
int jval = (int)round(dot(px, w) * D1);
// Compute luminance difference
int diff = (int)(jval - old_ival.s0);
// Accumulate values in mismatch vector
ib += (diff * old_ival.s12);
// Update old val offset
old_val_offset++;
}
}
float2 b = convert_float2(ib) * (float2)FLT_SCALE;
// Optical Flow
float2 delta;
delta.x = (float)((G.s1 * b.y - G.s2 * b.x) * D);
delta.y = (float)((G.s1 * b.x - G.s0 * b.y) * D);
// Update new point coordinate
new_keypoint += delta;
out_new_point = new_keypoint + (float2)half_window;
if(term_epsilon == 1)
{
float mag2 = dot(delta, delta);
if(mag2 <= epsilon)
{
new_points[idx].xy = out_new_point;
return;
}
}
// Check convergence analyzing the previous delta
if(j > 0 && all(fabs(delta + prev_delta) < (float2)0.01f))
{
out_new_point -= delta * (float2)0.5f;
new_points[idx].xy = out_new_point;
return;
}
// Update previous delta
prev_delta = delta;
if(term_iteration == 1)
{
j++;
}
}
new_points[idx].xy = out_new_point;
}