blob: 492de8a6eea7d7ee258e08fb889ebe85565eb1a7 [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NETransposeKernel.h"
#include "arm_compute/core/AccessWindowTranspose.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Validate.h"
#include <arm_neon.h>
using namespace arm_compute;
namespace arm_compute
{
class Coordinates;
} // namespace arm_compute
namespace
{
void transpose_8bit_elements(const ITensor *in, ITensor *out, const Window &window)
{
Window window_out(window);
window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
window_out.set(Window::DimY, Window::Dimension(0, 0, 0));
Iterator input(in, window);
Iterator output(out, window_out);
const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1];
const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1];
execute_window_loop(window, [&](const Coordinates & id)
{
const uint8x8_t row0 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + 0 * input_stride_in_bytes));
const uint8x8_t row1 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + 1 * input_stride_in_bytes));
const uint8x8_t row2 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + 2 * input_stride_in_bytes));
const uint8x8_t row3 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + 3 * input_stride_in_bytes));
const uint8x8_t row4 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + 4 * input_stride_in_bytes));
const uint8x8_t row5 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + 5 * input_stride_in_bytes));
const uint8x8_t row6 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + 6 * input_stride_in_bytes));
const uint8x8_t row7 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + 7 * input_stride_in_bytes));
// Transpose 2x2
const uint8x8x2_t k0_u8 = vtrn_u8(row0, row1);
const uint8x8x2_t k1_u8 = vtrn_u8(row2, row3);
const uint8x8x2_t k2_u8 = vtrn_u8(row4, row5);
const uint8x8x2_t k3_u8 = vtrn_u8(row6, row7);
// Transpose 4x4
const uint16x4x2_t k0_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[0]), vreinterpret_u16_u8(k1_u8.val[0]));
const uint16x4x2_t k1_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[1]), vreinterpret_u16_u8(k1_u8.val[1]));
const uint16x4x2_t k2_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[0]), vreinterpret_u16_u8(k3_u8.val[0]));
const uint16x4x2_t k3_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[1]), vreinterpret_u16_u8(k3_u8.val[1]));
// Transpose 8x8
const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k2_u16.val[0]));
const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k2_u16.val[1]));
const uint32x2x2_t k2_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[0]), vreinterpret_u32_u16(k3_u16.val[0]));
const uint32x2x2_t k3_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[1]), vreinterpret_u32_u16(k3_u16.val[1]));
// Compute destination address
const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + id.x() * output_stride_in_bytes;
vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[0])));
vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[0])));
vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[0])));
vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[0])));
vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 4 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[1])));
vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 5 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[1])));
vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 6 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[1])));
vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 7 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[1])));
},
input, output);
}
void transpose_16bit_elements(const ITensor *in, ITensor *out, const Window &window)
{
Window window_out(window);
window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
window_out.set(Window::DimY, Window::Dimension(0, 0, 0));
Iterator input(in, window);
Iterator output(out, window_out);
const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1];
const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1];
execute_window_loop(window, [&](const Coordinates & id)
{
const uint16x4_t row0 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 0 * input_stride_in_bytes));
const uint16x4_t row1 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 1 * input_stride_in_bytes));
const uint16x4_t row2 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 2 * input_stride_in_bytes));
const uint16x4_t row3 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 3 * input_stride_in_bytes));
// Transpose 2x2
const uint16x4x2_t k0_u16 = vtrn_u16(row0, row1);
const uint16x4x2_t k1_u16 = vtrn_u16(row2, row3);
// Transpose 4x4
const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k1_u16.val[0]));
const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k1_u16.val[1]));
// Compute destination address
const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + id.x() * output_stride_in_bytes;
vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[0]));
vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[0]));
vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[1]));
vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[1]));
},
input, output);
}
void transpose_32bit_elements(const ITensor *in, ITensor *out, const Window &window)
{
Window window_out(window);
window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
window_out.set(Window::DimY, Window::Dimension(0, 0, 0));
Iterator input(in, window);
Iterator output(out, window_out);
const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1];
const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1];
execute_window_loop(window, [&](const Coordinates & id)
{
const uint32x4_t row0 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 0 * input_stride_in_bytes));
const uint32x4_t row1 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 1 * input_stride_in_bytes));
const uint32x4_t row2 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 2 * input_stride_in_bytes));
const uint32x4_t row3 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 3 * input_stride_in_bytes));
// Transpose 2x2
const uint32x2x2_t k0_u32 = vtrn_u32(vget_low_u32(row0), vget_low_u32(row1));
const uint32x2x2_t k1_u32 = vtrn_u32(vget_high_u32(row2), vget_high_u32(row3));
const uint32x2x2_t k2_u32 = vtrn_u32(vget_high_u32(row0), vget_high_u32(row1));
const uint32x2x2_t k3_u32 = vtrn_u32(vget_low_u32(row2), vget_low_u32(row3));
// Compute destination address
const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + id.x() * output_stride_in_bytes;
// Swap block 01 with block 10 and store
vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vcombine_u32(k0_u32.val[0], k3_u32.val[0]));
vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vcombine_u32(k0_u32.val[1], k3_u32.val[1]));
vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vcombine_u32(k2_u32.val[0], k1_u32.val[0]));
vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vcombine_u32(k2_u32.val[1], k1_u32.val[1]));
},
input, output);
}
} // namespace
NETransposeKernel::NETransposeKernel()
: _func(nullptr), _input(nullptr), _output(nullptr)
{
}
void NETransposeKernel::configure(const ITensor *input, ITensor *output)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8, DataType::S8, DataType::QS8, DataType::U16, DataType::S16, DataType::U32, DataType::S32, DataType::F16, DataType::F32);
ARM_COMPUTE_ERROR_ON(output == nullptr);
TensorShape output_shape{ input->info()->tensor_shape() };
const size_t w_out = input->info()->dimension(1);
const size_t h_out = input->info()->dimension(0);
output_shape.set(0, w_out);
output_shape.set(1, h_out);
// Output tensor auto inizialitation if not yet initialized
auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type(), input->info()->fixed_point_position());
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DIMENSIONS(output->info()->tensor_shape(), output_shape);
_input = input;
_output = output;
unsigned int num_elems_processed_per_iteration = 0;
switch(input->info()->element_size())
{
case 1:
_func = &transpose_8bit_elements;
num_elems_processed_per_iteration = 8;
break;
case 2:
_func = &transpose_16bit_elements;
num_elems_processed_per_iteration = 4;
break;
case 4:
_func = &transpose_32bit_elements;
num_elems_processed_per_iteration = 4;
break;
default:
ARM_COMPUTE_ERROR("Element size not supported");
break;
}
// Configure kernel window
Window win = calculate_max_window(*input->info(), Steps(num_elems_processed_per_iteration, num_elems_processed_per_iteration));
AccessWindowTranspose output_access(output->info(), 0, 0, num_elems_processed_per_iteration, num_elems_processed_per_iteration);
update_window_and_padding(win,
AccessWindowRectangle(input->info(), 0, 0, num_elems_processed_per_iteration, num_elems_processed_per_iteration),
output_access);
output_access.set_valid_region(win, input->info()->valid_region());
INEKernel::configure(win);
}
void NETransposeKernel::run(const Window &window)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
(*_func)(_input, _output, window);
}