blob: 3f26d0f1a63a3fd40a04043e43f18134197d3171 [file] [log] [blame]
/*
* Copyright (c) 2019-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#if defined(DATA_TYPE)
/** Calculates and applies the twiddle factor to a given input.
*
* @param[in] phi The angle.
* @param[in,out] input The input on which the factor should be applied.
*/
#define TWIDDLE_FACTOR_MULTIPLICATION(phi, input) \
{ \
VEC_DATA_TYPE(DATA_TYPE, 2) \
w, tmp; \
w.x = cos(phi); \
w.y = sin(phi); \
tmp.x = (w.x * input.x) - (w.y * input.y); \
tmp.y = (w.x * input.y) + (w.y * input.x); \
input = tmp; \
}
/** Computes radix-2 butterfly unit.
*
* @param[in,out] c0 Complex input 0.
* @param[in,out] c1 Complex input 1.
*/
#define DFT_2(c0, c1) \
{ \
VEC_DATA_TYPE(DATA_TYPE, 2) \
v0; \
v0 = c0; \
c0 = v0 + c1; \
c1 = v0 - c1; \
}
// radix-3 butterfly unit factors
#define SQRT3DIV2 0.86602540378443f
/** Computes radix-3 butterfly unit.
*
* @param[in,out] c0 Complex input 0.
* @param[in,out] c1 Complex input 1.
* @param[in,out] c2 Complex input 2.
*/
#define DFT_3(c0, c1, c2) \
{ \
VEC_DATA_TYPE(DATA_TYPE, 2) \
v0 = c1 + c2; \
VEC_DATA_TYPE(DATA_TYPE, 2) \
v1 = c1 - c2; \
c1.x = c0.x - 0.5f * v0.x + v1.y * SQRT3DIV2; \
c1.y = c0.y - 0.5f * v0.y - v1.x * SQRT3DIV2; \
c2.x = c0.x - 0.5f * v0.x - v1.y * SQRT3DIV2; \
c2.y = c0.y - 0.5f * v0.y + v1.x * SQRT3DIV2; \
c0 = c0 + v0; \
}
/**Computes radix-4 butterfly unit.
*
* @param[in,out] c0 Complex input 0.
* @param[in,out] c1 Complex input 1.
* @param[in,out] c2 Complex input 2.
* @param[in,out] c3 Complex input 3.
*/
#define DFT_4(c0, c1, c2, c3) \
{ \
VEC_DATA_TYPE(DATA_TYPE, 2) \
v0, v1, v2, v3; \
v0 = c0 + c2; \
v1 = c1 + c3; \
v2 = c0 - c2; \
v3.x = c1.y - c3.y; \
v3.y = c3.x - c1.x; \
c0 = v0 + v1; \
c2 = v0 - v1; \
c1 = v2 + v3; \
c3 = v2 - v3; \
}
// radix-5 butterfly unit factors
#define W5_A (DATA_TYPE)0.30901699437494f
#define W5_B (DATA_TYPE)0.95105651629515f
#define W5_C (DATA_TYPE)0.80901699437494f
#define W5_D (DATA_TYPE)0.58778525229247f
/** Computes radix-5 butterfly unit.
*
* @param[in,out] c0 Complex input 0.
* @param[in,out] c1 Complex input 1.
* @param[in,out] c2 Complex input 2.
* @param[in,out] c3 Complex input 3.
* @param[in,out] c4 Complex input 4.
*/
#define DFT_5(c0, c1, c2, c3, c4) \
{ \
VEC_DATA_TYPE(DATA_TYPE, 2) \
v0, v1, v2, v3, v4; \
v0 = c0; \
v1 = W5_A * (c1 + c4) - W5_C * (c2 + c3); \
v2 = W5_C * (c1 + c4) - W5_A * (c2 + c3); \
v3 = W5_D * (c1 - c4) - W5_B * (c2 - c3); \
v4 = W5_B * (c1 - c4) + W5_D * (c2 - c3); \
c0 = v0 + c1 + c2 + c3 + c4; \
c1 = v0 + v1 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v4.y, -v4.x); \
c2 = v0 - v2 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v3.y, -v3.x); \
c3 = v0 - v2 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v3.y, v3.x); \
c4 = v0 + v1 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v4.y, v4.x); \
}
// radix-7 butterfly unit factors
#define W7_A (DATA_TYPE)0.62348980185873f
#define W7_B (DATA_TYPE)0.78183148246802f
#define W7_C (DATA_TYPE)0.22252093395631f
#define W7_D (DATA_TYPE)0.97492791218182f
#define W7_E (DATA_TYPE)0.90096886790241f
#define W7_F (DATA_TYPE)0.43388373911755f
/** Computes radix-7 butterfly unit.
*
* @param[in,out] c0 Complex input 0.
* @param[in,out] c1 Complex input 1.
* @param[in,out] c2 Complex input 2.
* @param[in,out] c3 Complex input 3.
* @param[in,out] c4 Complex input 4.
* @param[in,out] c5 Complex input 5.
* @param[in,out] c6 Complex input 6.
*/
#define DFT_7(c0, c1, c2, c3, c4, c5, c6) \
{ \
VEC_DATA_TYPE(DATA_TYPE, 2) \
v0, v1, v2, v3, v4, v5, v6; \
v0 = c0; \
v1 = W7_A * (c1 + c6) - W7_C * (c2 + c5) - W7_E * (c3 + c4); \
v2 = W7_C * (c1 + c6) + W7_E * (c2 + c5) - W7_A * (c3 + c4); \
v3 = W7_E * (c1 + c6) - W7_A * (c2 + c5) + W7_C * (c3 + c4); \
v4 = W7_B * (c1 - c6) + W7_D * (c2 - c5) + W7_F * (c3 - c4); \
v5 = W7_D * (c1 - c6) - W7_F * (c2 - c5) - W7_B * (c3 - c4); \
v6 = W7_F * (c1 - c6) - W7_B * (c2 - c5) + W7_D * (c3 - c4); \
c0 = v0 + c1 + c2 + c3 + c4 + c5 + c6; \
c1 = v0 + v1 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v4.y, -v4.x); \
c2 = v0 - v2 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v5.y, -v5.x); \
c3 = v0 - v3 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v6.y, -v6.x); \
c4 = v0 - v3 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v6.y, v6.x); \
c5 = v0 - v2 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v5.y, v5.x); \
c6 = v0 + v1 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v4.y, v4.x); \
}
/** Computes radix-8 butterfly unit.
*
* @param[in,out] c0 Complex input 0.
* @param[in,out] c1 Complex input 1.
* @param[in,out] c2 Complex input 2.
* @param[in,out] c3 Complex input 3.
* @param[in,out] c4 Complex input 4.
* @param[in,out] c5 Complex input 5.
* @param[in,out] c6 Complex input 6.
* @param[in,out] c7 Complex input 7.
*/
#define DFT_8(c0, c1, c2, c3, c4, c5, c6, c7) \
{ \
VEC_DATA_TYPE(DATA_TYPE, 2) \
v0, v1, v2, v3, v4, v5, v6, v7; \
VEC_DATA_TYPE(DATA_TYPE, 2) \
s0, s1, s2, s3, s4, s5, s6, s7; \
VEC_DATA_TYPE(DATA_TYPE, 2) \
t0, t1, t2; \
v0 = c0 + c4; \
v1 = c1 + c5; \
v2 = c2 + c6; \
v3 = c3 + c7; \
v4 = c0 - c4; \
v5 = c1 - c5; \
v6 = c2 - c6; \
v7 = c3 - c7; \
s0 = v0 + v2; \
s1 = v1 + v3; \
s2 = v0 - v2; \
s3 = v1 - v3; \
s4.x = v4.x - v6.y; \
s4.y = v4.y + v6.x; \
s5.x = v5.x - v7.y; \
s5.y = v5.y + v7.x; \
s6.x = v4.x + v6.y; \
s6.y = v4.y - v6.x; \
s7.x = v5.x + v7.y; \
s7.y = v5.y - v7.x; \
t0.x = -s3.y; \
t0.y = s3.x; \
t1.x = M_SQRT1_2_F * (s5.x - s5.y); \
t1.y = M_SQRT1_2_F * (s5.x + s5.y); \
t2.x = -M_SQRT1_2_F * (s7.x + s7.y); \
t2.y = M_SQRT1_2_F * (s7.x - s7.y); \
c0 = s0 + s1; \
c1 = s6 - t2; \
c2 = s2 - t0; \
c3 = s4 - t1; \
c4 = s0 - s1; \
c5 = s6 + t2; \
c6 = s2 + t0; \
c7 = s4 + t1; \
}
/** Computes the first stage of a radix-2 DFT on axis 0.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
*/
__kernel void fft_radix_2_first_stage_axis_0(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
)
{
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
#endif /* IN_PLACE */
// Load two complex input values
VEC_DATA_TYPE(DATA_TYPE, 4)
data = vload4(0, (__global DATA_TYPE *)input.ptr);
// Compute DFT N = 2
DFT_2(data.s01, data.s23);
// Store two complex output values
vstore4(data, 0, (__global DATA_TYPE *)output.ptr);
}
/** Computes the first stage of a radix-2 DFT on axis 1.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
*/
__kernel void fft_radix_2_first_stage_axis_1(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
)
{
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
#endif /* IN_PLACE */
// Load two complex input values
VEC_DATA_TYPE(DATA_TYPE, 2)
data1 = vload2(0, (__global DATA_TYPE *)input.ptr);
VEC_DATA_TYPE(DATA_TYPE, 2)
data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
// Compute DFT N = 2
DFT_2(data1, data2);
// Store two complex output values
vstore2(data1, 0, (__global DATA_TYPE *)output.ptr);
vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0));
}
/** Computes the first stage of a radix-3 DFT on axis 0.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
*/
__kernel void fft_radix_3_first_stage_axis_0(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
)
{
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
#endif /* IN_PLACE */
// Load three complex input values
VEC_DATA_TYPE(DATA_TYPE, 4)
data0 = vload4(0, (__global DATA_TYPE *)input.ptr);
VEC_DATA_TYPE(DATA_TYPE, 2)
data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2, 0, 0));
// Compute DFT N = 3
DFT_3(data0.s01, data0.s23, data1.s01);
// Store three complex output values
vstore4(data0, 0, (__global DATA_TYPE *)output.ptr);
vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2, 0, 0));
}
/** Computes the first stage of a radix-3 DFT on axis 1.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
*/
__kernel void fft_radix_3_first_stage_axis_1(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
)
{
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
#endif /* IN_PLACE */
// Load three complex input values
VEC_DATA_TYPE(DATA_TYPE, 2)
data0 = vload2(0, (__global DATA_TYPE *)input.ptr);
VEC_DATA_TYPE(DATA_TYPE, 2)
data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));
// Compute DFT N = 3
DFT_3(data0, data1, data2);
// Store three complex output values
vstore2(data0, 0, (__global DATA_TYPE *)output.ptr);
vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0));
vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0));
}
/** Computes the first stage of a radix-4 DFT on axis 0.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
*/
__kernel void fft_radix_4_first_stage_axis_0(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
)
{
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
#endif /* IN_PLACE */
// Load four complex input values
VEC_DATA_TYPE(DATA_TYPE, 8)
data = vload8(0, (__global DATA_TYPE *)input.ptr);
// Compute DFT N = 4
DFT_4(data.s01, data.s23, data.s45, data.s67);
// Store four complex output values
vstore8(data, 0, (__global DATA_TYPE *)output.ptr);
}
/** Computes the first stage of a radix-4 DFT on axis 1.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
*/
__kernel void fft_radix_4_first_stage_axis_1(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
)
{
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
#endif /* IN_PLACE */
// Load four complex input values
VEC_DATA_TYPE(DATA_TYPE, 2)
data0 = vload2(0, (__global DATA_TYPE *)input.ptr);
VEC_DATA_TYPE(DATA_TYPE, 2)
data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
data3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3, 0));
// Compute DFT N = 4
DFT_4(data0, data1, data2, data3);
// Store four complex output values
vstore2(data0, 0, (__global DATA_TYPE *)output.ptr);
vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0));
vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0));
vstore2(data3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3, 0));
}
/** Computes the first stage of a radix-5 DFT on axis 0.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
*/
__kernel void fft_radix_5_first_stage_axis_0(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
)
{
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
#endif /* IN_PLACE */
// Load five complex input values
VEC_DATA_TYPE(DATA_TYPE, 8)
data0 = vload8(0, (__global DATA_TYPE *)input.ptr);
VEC_DATA_TYPE(DATA_TYPE, 2)
data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4, 0, 0));
// Compute DFT N = 5
DFT_5(data0.s01, data0.s23, data0.s45, data0.s67, data1.s01);
// Store five complex output values
vstore8(data0, 0, (__global DATA_TYPE *)output.ptr);
vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4, 0, 0));
}
/** Computes the first stage of a radix-5 DFT on axis 1.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
*/
__kernel void fft_radix_5_first_stage_axis_1(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
)
{
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
#endif /* IN_PLACE */
// Load five complex input values
VEC_DATA_TYPE(DATA_TYPE, 2)
data0 = vload2(0, (__global DATA_TYPE *)input.ptr);
VEC_DATA_TYPE(DATA_TYPE, 2)
data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
data3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
data4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4, 0));
// Compute DFT N = 5
DFT_5(data0, data1, data2, data3, data4);
// Store five complex output values
vstore2(data0, 0, (__global DATA_TYPE *)output.ptr);
vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0));
vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0));
vstore2(data3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3, 0));
vstore2(data4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4, 0));
}
/** Computes the first stage of a radix-7 DFT on axis 0.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
*/
__kernel void fft_radix_7_first_stage_axis_0(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
)
{
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
#endif /* IN_PLACE */
// Load seven complex input values
VEC_DATA_TYPE(DATA_TYPE, 8)
data0 = vload8(0, (__global DATA_TYPE *)input.ptr);
VEC_DATA_TYPE(DATA_TYPE, 4)
data1 = vload4(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4, 0, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 6, 0, 0));
// Compute DFT N = 7
DFT_7(data0.s01, data0.s23, data0.s45, data0.s67, data1.s01, data1.s23, data2.s01);
// Store seven complex output values
vstore8(data0, 0, (__global DATA_TYPE *)output.ptr);
vstore4(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4, 0, 0));
vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 6, 0, 0));
}
/** Computes the first stage of a radix-7 DFT on axis 1.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
*/
__kernel void fft_radix_7_first_stage_axis_1(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
)
{
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
#endif /* IN_PLACE */
// Load seven complex input values
VEC_DATA_TYPE(DATA_TYPE, 2)
data0 = vload2(0, (__global DATA_TYPE *)input.ptr);
VEC_DATA_TYPE(DATA_TYPE, 2)
data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
data3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
data4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
data5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 5, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
data6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 6, 0));
// Compute DFT N = 7
DFT_7(data0, data1, data2, data3, data4, data5, data6);
// Store seven complex output values
vstore2(data0, 0, (__global DATA_TYPE *)output.ptr);
vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0));
vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0));
vstore2(data3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3, 0));
vstore2(data4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4, 0));
vstore2(data5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 5, 0));
vstore2(data6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 6, 0));
}
/** Computes the first stage of a radix-8 DFT on axis 0.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
*/
__kernel void fft_radix_8_first_stage_axis_0(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
)
{
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
#endif /* IN_PLACE */
// Load eight complex input values
VEC_DATA_TYPE(DATA_TYPE, 16)
data = vload16(0, (__global DATA_TYPE *)input.ptr);
// Compute DFT N = 8
DFT_8(data.s01, data.s23, data.s45, data.s67, data.s89, data.sAB, data.sCD, data.sEF);
// Store eight complex output values
vstore16(data, 0, (__global DATA_TYPE *)output.ptr);
}
/** Computes the first stage of a radix-8 DFT on axis 1.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
*/
__kernel void fft_radix_8_first_stage_axis_1(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
)
{
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
#endif /* IN_PLACE */
// Load eight complex input values
VEC_DATA_TYPE(DATA_TYPE, 2)
data0 = vload2(0, (__global DATA_TYPE *)input.ptr);
VEC_DATA_TYPE(DATA_TYPE, 2)
data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
data3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
data4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
data5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 5, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
data6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 6, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
data7 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 7, 0));
// Compute DFT N = 8
DFT_8(data0, data1, data2, data3, data4, data5, data6, data7);
// Store eight complex output values
vstore2(data0, 0, (__global DATA_TYPE *)output.ptr);
vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0));
vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0));
vstore2(data3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3, 0));
vstore2(data4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4, 0));
vstore2(data5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 5, 0));
vstore2(data6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 6, 0));
vstore2(data7, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 7, 0));
}
/** Computes a stage of a radix-2 FFT on axis 0.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
* @param[in] Nx The butterfly span. Products of radix order of previous radix's stage
* @param[in] Ni Nx * Ny.
* @param[in] exp_const Exponent constant
*/
__kernel void fft_radix_2_axis_0(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
,
uint Nx, uint Ni, float exp_const)
{
// Each work-item computes a single radix-2
uint kx = get_global_id(0);
// Compute nx
uint nx = kx % Nx;
// Compute n index
uint n = nx + (kx / Nx) * Ni;
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z;
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z;
#endif /* IN_PLACE */
// Load two complex input values
VEC_DATA_TYPE(DATA_TYPE, 2)
c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
VEC_DATA_TYPE(DATA_TYPE, 2)
c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0));
// Compute phi
DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
// Multiply by twiddle factor
TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
// Compute DFT N = 2
DFT_2(c0, c1);
// Store two complex output values
vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0));
}
/** Computes a stage of a radix-2 FFT on axis 1.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
* @param[in] Nx The butterfly span. Products of radix order of previous radix's stage
* @param[in] Ni Nx * Ny.
* @param[in] exp_const Exponent constant
*/
__kernel void fft_radix_2_axis_1(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
,
uint Nx, uint Ni, float exp_const)
{
// Each work-item computes a single radix-2
uint kx = get_global_id(1);
// Compute nx
uint nx = kx % Nx;
// Compute n index
uint n = nx + (kx / Nx) * Ni;
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
input.ptr += get_global_id(0) * input.stride_x + n * input.stride_y + get_global_id(2) * input.stride_z;
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
output.ptr += get_global_id(0) * output.stride_x + n * output.stride_y + get_global_id(2) * output.stride_z;
#endif /* IN_PLACE */
// Load two complex input values
VEC_DATA_TYPE(DATA_TYPE, 2)
c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
VEC_DATA_TYPE(DATA_TYPE, 2)
c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0));
// Compute phi
DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
// Multiply by twiddle factor
TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
// Compute DFT N = 2
DFT_2(c0, c1);
// Store two complex output values
vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0));
}
/** Computes a stage of a radix-3 FFT on axis 0.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
* @param[in] Nx The butterfly span. Products of radix order of previous radix's stage
* @param[in] Ni Nx * Ny.
* @param[in] exp_const Exponent constant
*/
__kernel void fft_radix_3_axis_0(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
,
uint Nx, uint Ni, float exp_const)
{
// Each work-item computes a single radix-3
uint kx = get_global_id(0);
// Compute nx
uint nx = kx % Nx;
// Compute n index
uint n = nx + (kx / Nx) * Ni;
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z;
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z;
#endif /* IN_PLACE */
// Load three complex input values
VEC_DATA_TYPE(DATA_TYPE, 2)
c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
VEC_DATA_TYPE(DATA_TYPE, 2)
c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0));
// Compute phi
DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
// Multiply by twiddle factor
TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
// Compute DFT N = 3
DFT_3(c0, c1, c2);
// Store three complex output values
vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0));
vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0));
}
/** Computes a stage of a radix-3 FFT on axis 1.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
* @param[in] Nx The butterfly span. Products of radix order of previous radix's stage
* @param[in] Ni Nx * Ny.
* @param[in] exp_const Exponent constant
*/
__kernel void fft_radix_3_axis_1(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
,
uint Nx, uint Ni, float exp_const)
{
// Each work-item computes a single radix-3
uint kx = get_global_id(1);
// Compute nx
uint nx = kx % Nx;
// Compute n index
uint n = nx + (kx / Nx) * Ni;
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
input.ptr += get_global_id(0) * input.stride_x + n * input.stride_y + get_global_id(2) * input.stride_z;
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
output.ptr += get_global_id(0) * output.stride_x + n * output.stride_y + get_global_id(2) * output.stride_z;
#endif /* IN_PLACE */
// Load three complex input values
VEC_DATA_TYPE(DATA_TYPE, 2)
c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
VEC_DATA_TYPE(DATA_TYPE, 2)
c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0));
// Compute phi
DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
// Multiply by twiddle factor
TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
// Compute DFT N = 3
DFT_3(c0, c1, c2);
// Store three complex output values
vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0));
vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0));
}
/** Computes a stage of a radix-4 FFT on axis 0.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
* @param[in] Nx The butterfly span. Products of radix order of previous radix's stage
* @param[in] Ni Nx * Ny.
* @param[in] exp_const Exponent constant
*/
__kernel void fft_radix_4_axis_0(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
,
uint Nx, uint Ni, float exp_const)
{
// Each work-item computes a single radix-4
uint kx = get_global_id(0);
// Compute nx
uint nx = kx % Nx;
// Compute n index
uint n = nx + (kx / Nx) * Ni;
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z;
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z;
#endif /* IN_PLACE */
// Load four complex input values
VEC_DATA_TYPE(DATA_TYPE, 2)
c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
VEC_DATA_TYPE(DATA_TYPE, 2)
c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 3 * Nx, 0, 0));
// Compute phi
DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
// Multiply by twiddle factor
TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3);
// Compute DFT N = 4
DFT_4(c0, c1, c2, c3);
// Store four complex output values
vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0));
vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0));
vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 3 * Nx, 0, 0));
}
/** Computes a stage of a radix-4 FFT on axis 1.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
* @param[in] Nx The butterfly span. Products of radix order of previous radix's stage
* @param[in] Ni Nx * Ny.
* @param[in] exp_const Exponent constant
*/
__kernel void fft_radix_4_axis_1(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
,
uint Nx, uint Ni, float exp_const)
{
// Each work-item computes a single radix-4
uint kx = get_global_id(1);
// Compute nx
uint nx = kx % Nx;
// Compute n index
uint n = nx + (kx / Nx) * Ni;
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
input.ptr += get_global_id(0) * input.stride_x + n * input.stride_y + get_global_id(2) * input.stride_z;
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
output.ptr += get_global_id(0) * output.stride_x + n * output.stride_y + get_global_id(2) * output.stride_z;
#endif /* IN_PLACE */
// Load four complex input values
VEC_DATA_TYPE(DATA_TYPE, 2)
c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
VEC_DATA_TYPE(DATA_TYPE, 2)
c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3 * Nx, 0));
// Compute phi
DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
// Multiply by twiddle factor
TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3);
// Compute DFT N = 4
DFT_4(c0, c1, c2, c3);
// Store four complex output values
vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0));
vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0));
vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3 * Nx, 0));
}
/** Computes a stage of a radix-5 FFT on axis 0.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
* @param[in] Nx The butterfly span. Products of radix order of previous radix's stage
* @param[in] Ni Nx * Ny.
* @param[in] exp_const Exponent constant
*/
__kernel void fft_radix_5_axis_0(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
,
uint Nx, uint Ni, float exp_const)
{
// Each work-item computes a single radix-5
uint kx = get_global_id(0);
// Compute nx
uint nx = kx % Nx;
// Compute n index
uint n = nx + (kx / Nx) * Ni;
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z;
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z;
#endif /* IN_PLACE */
// Load five complex input values
VEC_DATA_TYPE(DATA_TYPE, 2)
c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
VEC_DATA_TYPE(DATA_TYPE, 2)
c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 3 * Nx, 0, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4 * Nx, 0, 0));
// Compute phi
DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
// Multiply by twiddle factor
TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3);
TWIDDLE_FACTOR_MULTIPLICATION(4 * phi, c4);
// Compute DFT N = 5
DFT_5(c0, c1, c2, c3, c4);
// Store five complex output values
vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0));
vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0));
vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 3 * Nx, 0, 0));
vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4 * Nx, 0, 0));
}
/** Computes a stage of a radix-5 FFT on axis 1.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
* @param[in] Nx The butterfly span. Products of radix order of previous radix's stage
* @param[in] Ni Nx * Ny.
* @param[in] exp_const Exponent constant
*/
__kernel void fft_radix_5_axis_1(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
,
uint Nx, uint Ni, float exp_const)
{
// Each work-item computes a single radix-5
uint kx = get_global_id(1);
// Compute nx
uint nx = kx % Nx;
// Compute n index
uint n = nx + (kx / Nx) * Ni;
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
input.ptr += get_global_id(0) * input.stride_x + n * input.stride_y + get_global_id(2) * input.stride_z;
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
output.ptr += get_global_id(0) * output.stride_x + n * output.stride_y + get_global_id(2) * output.stride_z;
#endif /* IN_PLACE */
// Load five complex input values
VEC_DATA_TYPE(DATA_TYPE, 2)
c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
VEC_DATA_TYPE(DATA_TYPE, 2)
c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3 * Nx, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4 * Nx, 0));
// Compute phi
DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
// Multiply by twiddle factor
TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3);
TWIDDLE_FACTOR_MULTIPLICATION(4 * phi, c4);
// Compute DFT N = 5
DFT_5(c0, c1, c2, c3, c4);
// Store five complex output values
vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0));
vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0));
vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3 * Nx, 0));
vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4 * Nx, 0));
}
/** Computes a stage of a radix-7 FFT on axis 0.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
* @param[in] Nx The butterfly span. Products of radix order of previous radix's stage
* @param[in] Ni Nx * Ny.
* @param[in] exp_const Exponent constant
*/
__kernel void fft_radix_7_axis_0(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
,
uint Nx, uint Ni, float exp_const)
{
// Each work-item computes a single radix-7
uint kx = get_global_id(0);
// Compute nx
uint nx = kx % Nx;
// Compute n index
uint n = nx + (kx / Nx) * Ni;
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z;
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z;
#endif /* IN_PLACE */
// Load seven complex input values
VEC_DATA_TYPE(DATA_TYPE, 2)
c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
VEC_DATA_TYPE(DATA_TYPE, 2)
c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 3 * Nx, 0, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4 * Nx, 0, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 5 * Nx, 0, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 6 * Nx, 0, 0));
// Compute phi
DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
// Multiply by twiddle factor
TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3);
TWIDDLE_FACTOR_MULTIPLICATION(4 * phi, c4);
TWIDDLE_FACTOR_MULTIPLICATION(5 * phi, c5);
TWIDDLE_FACTOR_MULTIPLICATION(6 * phi, c6);
// Compute DFT N = 7
DFT_7(c0, c1, c2, c3, c4, c5, c6);
// Store seven complex output values
vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0));
vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0));
vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 3 * Nx, 0, 0));
vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4 * Nx, 0, 0));
vstore2(c5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 5 * Nx, 0, 0));
vstore2(c6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 6 * Nx, 0, 0));
}
/** Computes a stage of a radix-7 FFT on axis 1.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
* @param[in] Nx The butterfly span. Products of radix order of previous radix's stage
* @param[in] Ni Nx * Ny.
* @param[in] exp_const Exponent constant
*/
__kernel void fft_radix_7_axis_1(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
,
uint Nx, uint Ni, float exp_const)
{
// Each work-item computes a single radix-7
uint kx = get_global_id(1);
// Compute nx
uint nx = kx % Nx;
// Compute n index
uint n = nx + (kx / Nx) * Ni;
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
input.ptr += get_global_id(0) * input.stride_x + n * input.stride_y + get_global_id(2) * input.stride_z;
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
output.ptr += get_global_id(0) * output.stride_x + n * output.stride_y + get_global_id(2) * output.stride_z;
#endif /* IN_PLACE */
// Load seven complex input values
VEC_DATA_TYPE(DATA_TYPE, 2)
c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
VEC_DATA_TYPE(DATA_TYPE, 2)
c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3 * Nx, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4 * Nx, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 5 * Nx, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 6 * Nx, 0));
// Compute phi
DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
// Multiply by twiddle factor
TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3);
TWIDDLE_FACTOR_MULTIPLICATION(4 * phi, c4);
TWIDDLE_FACTOR_MULTIPLICATION(5 * phi, c5);
TWIDDLE_FACTOR_MULTIPLICATION(6 * phi, c6);
// Compute DFT N = 7
DFT_7(c0, c1, c2, c3, c4, c5, c6);
// Store seven complex output values
vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0));
vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0));
vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3 * Nx, 0));
vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4 * Nx, 0));
vstore2(c5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 5 * Nx, 0));
vstore2(c6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 6 * Nx, 0));
}
/** Computes a stage of a radix-8 FFT on axis 0.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
* @param[in] Nx The butterfly span. Products of radix order of previous radix's stage
* @param[in] Ni Nx * Ny.
* @param[in] exp_const Exponent constant
*/
__kernel void fft_radix_8_axis_0(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
,
uint Nx, uint Ni, float exp_const)
{
// Each work-item computes a single radix-8
uint kx = get_global_id(0);
// Compute nx
uint nx = kx % Nx;
// Compute n index
uint n = nx + (kx / Nx) * Ni;
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z;
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z;
#endif /* IN_PLACE */
// Load eight complex input values
VEC_DATA_TYPE(DATA_TYPE, 2)
c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
VEC_DATA_TYPE(DATA_TYPE, 2)
c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 3 * Nx, 0, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4 * Nx, 0, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 5 * Nx, 0, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 6 * Nx, 0, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c7 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 7 * Nx, 0, 0));
// Compute phi
DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
// Multiply by twiddle factor
TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3);
TWIDDLE_FACTOR_MULTIPLICATION(4 * phi, c4);
TWIDDLE_FACTOR_MULTIPLICATION(5 * phi, c5);
TWIDDLE_FACTOR_MULTIPLICATION(6 * phi, c6);
TWIDDLE_FACTOR_MULTIPLICATION(7 * phi, c7);
// Compute DFT N = 8
DFT_8(c0, c1, c2, c3, c4, c5, c6, c7);
// Store eight complex output values
vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0));
vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0));
vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 3 * Nx, 0, 0));
vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4 * Nx, 0, 0));
vstore2(c5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 5 * Nx, 0, 0));
vstore2(c6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 6 * Nx, 0, 0));
vstore2(c7, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 7 * Nx, 0, 0));
}
/** Computes a stage of a radix-8 FFT on axis 1.
*
* @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
*
* @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32
* @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes)
* @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
* @param[in] Nx The butterfly span. Products of radix order of previous radix's stage
* @param[in] Ni Nx * Ny.
* @param[in] exp_const Exponent constant
*/
__kernel void fft_radix_8_axis_1(
TENSOR3D_DECLARATION(input)
#ifndef IN_PLACE
,
TENSOR3D_DECLARATION(output)
#endif /* not IN_PLACE */
,
uint Nx, uint Ni, float exp_const)
{
// Each work-item computes a single radix-8
uint kx = get_global_id(1);
// Compute nx
uint nx = kx % Nx;
// Compute n index
uint n = nx + (kx / Nx) * Ni;
// Get tensor pointers
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
input.ptr += get_global_id(0) * input.stride_x + n * input.stride_y + get_global_id(2) * input.stride_z;
#ifdef IN_PLACE
Tensor3D output = input;
#else /* IN_PLACE */
Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
output.ptr += get_global_id(0) * output.stride_x + n * output.stride_y + get_global_id(2) * output.stride_z;
#endif /* IN_PLACE */
// Load eight complex input values
VEC_DATA_TYPE(DATA_TYPE, 2)
c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
VEC_DATA_TYPE(DATA_TYPE, 2)
c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3 * Nx, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4 * Nx, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 5 * Nx, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 6 * Nx, 0));
VEC_DATA_TYPE(DATA_TYPE, 2)
c7 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 7 * Nx, 0));
// Compute phi
DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
// Multiply by twiddle factor
TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3);
TWIDDLE_FACTOR_MULTIPLICATION(4 * phi, c4);
TWIDDLE_FACTOR_MULTIPLICATION(5 * phi, c5);
TWIDDLE_FACTOR_MULTIPLICATION(6 * phi, c6);
TWIDDLE_FACTOR_MULTIPLICATION(7 * phi, c7);
// Compute DFT N = 8
DFT_8(c0, c1, c2, c3, c4, c5, c6, c7);
// Store eight complex output values
vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0));
vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0));
vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3 * Nx, 0));
vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4 * Nx, 0));
vstore2(c5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 5 * Nx, 0));
vstore2(c6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 6 * Nx, 0));
vstore2(c7, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 7 * Nx, 0));
}
#endif // defined(DATA_TYPE)