blob: 71a372eb2911f3abe2273bc4fcba1be60c2f6428 [file] [log] [blame]
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#if defined(DATA_TYPE) && defined(SRC_WIDTH) && defined(SRC_HEIGHT)
/** This kernel applies dot product to each plane on the input tensor and the corrispective column of the reshaped weight tensor.
*
* @note Datatype and source width and height should be given as a preprocessor argument using -DDATA_TYPE=type, -DSRC_WIDTH=width and -DSRC_HEIGHT=height. e.g. -DDATA_TYPE=short
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] weights_ptr Pointer to the weights tensor. Same as @p src_ptr
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
* @param[out] dst_ptr Pointer to the destination tensor. Same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void gemm_mv(TENSOR3D_DECLARATION(src), IMAGE_DECLARATION(weights), VECTOR_DECLARATION(dst))
{
Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
int y = get_global_id(1) * 4;
int z = get_global_id(2);
__global uchar *current_weights = weights_ptr + weights_offset_first_element_in_bytes + z * weights_stride_y;
__global uchar *input_ptr = src.ptr;
DATA_TYPE acc0 = (DATA_TYPE)0;
DATA_TYPE acc1 = (DATA_TYPE)0;
DATA_TYPE acc2 = (DATA_TYPE)0;
DATA_TYPE acc3 = (DATA_TYPE)0;
// This kernel handle 4 rows in per thread so that it can reuse the weights
for(int i = 0; i < SRC_WIDTH; i += 4)
{
VEC_DATA_TYPE(DATA_TYPE, 4)
weights = vload4(0, (__global DATA_TYPE *)(current_weights + i * weights_stride_x));
int4 offset = (int4)i * (int4)src_stride_x + (int4)(0, 1, 2, 3) * (int4)src_stride_y;
VEC_DATA_TYPE(DATA_TYPE, 4)
tmp0 = vload4(0, (__global DATA_TYPE *)(input_ptr + offset.s0));
VEC_DATA_TYPE(DATA_TYPE, 4)
tmp1 = vload4(0, (__global DATA_TYPE *)(input_ptr + offset.s1));
VEC_DATA_TYPE(DATA_TYPE, 4)
tmp2 = vload4(0, (__global DATA_TYPE *)(input_ptr + offset.s2));
VEC_DATA_TYPE(DATA_TYPE, 4)
tmp3 = vload4(0, (__global DATA_TYPE *)(input_ptr + offset.s3));
acc0 += dot(weights, tmp0);
acc1 += dot(weights, tmp1);
acc2 += dot(weights, tmp2);
acc3 += dot(weights, tmp3);
}
__global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (y + z * SRC_HEIGHT) * dst_stride_x;
int rows_left = SRC_HEIGHT - (y + 4);
// This if check is used to handle the last few rows when it can't be divided by the four
if(rows_left >= 0)
{
VEC_DATA_TYPE(DATA_TYPE, 4)
out = (VEC_DATA_TYPE(DATA_TYPE, 4))(acc0, acc1, acc2, acc3);
vstore4(out, 0, (__global DATA_TYPE *)output_ptr);
}
else
{
switch(rows_left)
{
case -1: // three rows left; one is padding
*((__global DATA_TYPE *)(output_ptr + 2 * dst_stride_x)) = acc2;
case -2: // two rows left; two are padding
*((__global DATA_TYPE *)(output_ptr + 1 * dst_stride_x)) = acc1;
case -3: // one row left; three are padding
*((__global DATA_TYPE *)(output_ptr + 0 * dst_stride_x)) = acc0;
break;
}
}
}
/** This kernel applies dot product to each plane on the input tensor and the corresponding column of the reshaped weight tensor.
*
* @note Input data type should be given as a preprocessor argument using -DDATA_TYPE=type, e.g. -DDATA_TYPE=uchar
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: S32
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] input_offset Input's quantization offset
* @param[in] weights_offset Weights's quantization offset
*/
__kernel void gemm_mv_quantized(TENSOR3D_DECLARATION(src),
IMAGE_DECLARATION(weights),
VECTOR_DECLARATION(dst),
const int input_offset,
const int weights_offset)
{
Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
int y = get_global_id(1) * 4;
int z = get_global_id(2);
__global uchar *current_weights = weights_ptr + weights_offset_first_element_in_bytes + z * weights_stride_y;
__global uchar *input_ptr = src.ptr;
int acc0 = 0;
int acc1 = 0;
int acc2 = 0;
int acc3 = 0;
// This kernel handle 4 rows in per thread so that it can reuse the weights
for(int i = 0; i < SRC_WIDTH; i += 4)
{
int4 w = convert_int4(vload4(0, (__global DATA_TYPE *)(current_weights + i * weights_stride_x))) + (int4)weights_offset;
int4 offset = (int4)i * (int4)src_stride_x + (int4)(0, 1, 2, 3) * (int4)src_stride_y;
int4 tmp0 = convert_int4(vload4(0, (__global DATA_TYPE *)(input_ptr + offset.s0))) + (int4)input_offset;
int4 tmp1 = convert_int4(vload4(0, (__global DATA_TYPE *)(input_ptr + offset.s1))) + (int4)input_offset;
int4 tmp2 = convert_int4(vload4(0, (__global DATA_TYPE *)(input_ptr + offset.s2))) + (int4)input_offset;
int4 tmp3 = convert_int4(vload4(0, (__global DATA_TYPE *)(input_ptr + offset.s3))) + (int4)input_offset;
// Accumulate
acc0 += tmp0.s0 * w.s0 + tmp0.s1 * w.s1 + tmp0.s2 * w.s2 + tmp0.s3 * w.s3;
acc1 += tmp1.s0 * w.s0 + tmp1.s1 * w.s1 + tmp1.s2 * w.s2 + tmp1.s3 * w.s3;
acc2 += tmp2.s0 * w.s0 + tmp2.s1 * w.s1 + tmp2.s2 * w.s2 + tmp2.s3 * w.s3;
acc3 += tmp3.s0 * w.s0 + tmp3.s1 * w.s1 + tmp3.s2 * w.s2 + tmp3.s3 * w.s3;
}
__global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (y + z * SRC_HEIGHT) * dst_stride_x;
int rows_left = SRC_HEIGHT - (y + 4);
// This if check is used to handle the last few rows when it can't be divided by the four
if(rows_left >= 0)
{
vstore4((int4)(acc0, acc1, acc2, acc3), 0, (__global int *)output_ptr);
}
else
{
switch(rows_left)
{
case -1: // three rows left; one is padding
*((__global int *)(output_ptr + 2 * dst_stride_x)) = acc2;
case -2: // two rows left; two are padding
*((__global int *)(output_ptr + 1 * dst_stride_x)) = acc1;
case -3: // one row left; three are padding
*((__global int *)(output_ptr + 0 * dst_stride_x)) = acc0;
break;
}
}
}
#endif /* defined(DATA_TYPE) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) */