blob: 9f2c6e23b579a154c3a7d692e7548766b3eff2ba [file] [log] [blame]
/*
* Copyright (c) 2016-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#include "helpers_asymm.h"
#if defined(FLOAT_DATA_TYPE)
#define ISGREATER(x, y) (SELECT_VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE))(isgreater(x, y))
#define ISLESS(x, y) (SELECT_VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE))(isless(x, y))
#define ISGREATER_SCALAR(x, y) (SELECT_DATA_TYPE(DATA_TYPE_PROMOTED))(isgreater(x, y))
#define ISLESS_SCALAR(x, y) (SELECT_DATA_TYPE(DATA_TYPE_PROMOTED))(isless(x, y))
#else // !FLOAT_DATA_TYPE
#if defined(WIDTH)
#define ISGREATER(x, y) (x > y) ? 1 : 0
#define ISLESS(x, y) (x < y) ? 1 : 0
#define ISGREATER_SCALAR ISGREATER
#define ISLESS_SCALAR ISLESS
#else // !defined(WIDTH)
#define ISGREATER(x, y) select((VEC_DATA_TYPE(int, VEC_SIZE))0, (VEC_DATA_TYPE(int, VEC_SIZE)) - 1, x > y)
#define ISLESS(x, y) select((VEC_DATA_TYPE(int, VEC_SIZE))0, (VEC_DATA_TYPE(int, VEC_SIZE)) - 1, x < y)
#endif // defined(WIDTH)
#endif // defined(FLOAT_DATA_TYPE)
#if defined(WIDTH)
#if defined(OPERATION)
#define sum(in0, in1, size) (in0 + SUM_REDUCE(in1, size))
#define square_sum(in0, in1, size) (in0 + SUM_REDUCE((in1 * in1), size))
#define product(in0, in1, size) (in0 * PROD_REDUCE(in1, size))
/** This kernel performs parallel reduction given an operation on x-axis.
*
* @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note The operation we want to perform must be passed at compile time using -DOPERATION e.g. -DOPERATION=square_sum
* @note The mean flag must be passed at compile time using -DMEAN if we want to compute the mean value
* @note The product flag must be passed at compile time using -DPROD if we want to compute the product, otherwise sum will be used
* @note The width size must be passed at compile time using -DWIDTH e.g. -DWIDTH=128 if we want to compute the mean value
*
* @param[in] input_ptr Pointer to the source tensor. Supported data types: F16/F32
* @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] output_ptr Pointer to the destination tensor. Supported data types: same as @p input
* @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void reduction_operation_x(
TENSOR3D_DECLARATION(input),
TENSOR3D_DECLARATION(output))
{
int y = get_global_id(1);
int z = get_global_id(2);
__global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + y * input_stride_y + z * input_stride_z;
__global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + y * output_stride_y + z * output_stride_z;
#if defined(PROD)
DATA_TYPE res = (DATA_TYPE)1;
#else // defined(PROD)
DATA_TYPE res = (DATA_TYPE)0;
#endif // defined(PROD)
int x = 0;
for(; x <= (WIDTH - VEC_SIZE); x += VEC_SIZE)
{
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
vals = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input_addr + x * sizeof(DATA_TYPE)));
res = OPERATION(res, vals, VEC_SIZE);
}
#if(WIDTH % VEC_SIZE)
_Pragma("unroll") for(; x < WIDTH; ++x)
{
DATA_TYPE val = *((__global DATA_TYPE *)(input_addr + x * sizeof(DATA_TYPE)));
res = OPERATION(res, val, 1);
}
#endif // (WIDTH % VEC_SIZE)
#if defined(MEAN)
res /= WIDTH;
#endif // defined(MEAN)
*((__global DATA_TYPE *)output_addr) = res;
}
#endif // defined(OPERATION)
/** This kernel performs reduction on x-axis. (Non parallel)
*
* @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note The width size must be passed at compile time using -DWIDTH e.g. -DWIDTH=128
* @note The product flag must be passed at compile time using -DPROD if we want to compute the product, otherwise sum will be used
*
* @param[in] input_ptr Pointer to the source tensor. Supported data types: S32/F16/F32 and QASYMM8/QASYMM8_SIGNED for operation MEAN
* @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] output_ptr The local buffer to hold sumed values. Supported data types: same as @p input_ptr
* @param[in] output_stride_x Stride of the output tensor in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor
*/
__kernel void reduction_operation_non_parallel_x(
VECTOR_DECLARATION(input),
VECTOR_DECLARATION(output))
{
Vector input = CONVERT_TO_VECTOR_STRUCT(input);
Vector output = CONVERT_TO_VECTOR_STRUCT(output);
DATA_TYPE_PROMOTED res = CONVERT(*((__global DATA_TYPE *)vector_offset(&input, 0)), DATA_TYPE_PROMOTED);
// Convert input into F32 in order to perform quantized multiplication
#if defined(PROD) && defined(OFFSET) && defined(SCALE)
float res_f = DEQUANTIZE(res, OFFSET, SCALE, DATA_TYPE_PROMOTED, 1);
#endif // defined(PROD) && defined(OFFSET) && defined(SCALE)
for(unsigned int x = 1; x < WIDTH; ++x)
{
DATA_TYPE_PROMOTED in = CONVERT(*((__global DATA_TYPE *)vector_offset(&input, x)), DATA_TYPE_PROMOTED);
#if defined(MIN)
res = select(res, in, ISLESS_SCALAR(in, res));
#elif defined(MAX)
res = select(res, in, ISGREATER_SCALAR(in, res));
#elif defined(PROD)
#if defined(OFFSET) && defined(SCALE)
res_f *= DEQUANTIZE(in, OFFSET, SCALE, DATA_TYPE_PROMOTED, 1);
#else // !(defined(OFFSET) && defined(SCALE))
res *= in;
#endif // defined(OFFSET) && defined(SCALE)
#else // defined(SUM))
res += in;
#endif // defined(MAX) || defined(MIN) || defined(PROD)
}
// Store result
#if defined(MEAN)
res /= WIDTH;
#endif // defined(MEAN)
// Subtract the offsets in case of quantized SUM
#if defined(SUM) && defined(OFFSET) && defined(SCALE)
res -= (WIDTH - 1) * OFFSET;
#endif // defined(OFFSET) && defined(OFFSET) && defined(SCALE)
// Re-quantize
#if defined(PROD) && defined(OFFSET) && defined(SCALE)
res = QUANTIZE(res_f, OFFSET, SCALE, DATA_TYPE_PROMOTED, 1);
#endif // defined(PROD) && defined(OFFSET) && defined(SCALE)
*((__global DATA_TYPE *)output.ptr) = CONVERT_SAT(res, DATA_TYPE);
}
#endif // defined(WIDTH)
#if defined(HEIGHT)
/** This kernel performs reduction on y-axis.
*
* @note The input data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note The height size must be passed at compile time using -DHEIGHT e.g. -DHEIGHT=128
*
* @param[in] input_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/S32/F16/F32
* @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] output_ptr The local buffer to hold sumed values. Supported data types: same as @p input_ptr
* @param[in] output_stride_x Stride of the output tensor in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y Stride of the output tensor in Y dimension (in bytes)
* @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor
*/
__kernel void reduction_operation_y(
IMAGE_DECLARATION(input),
IMAGE_DECLARATION(output))
{
int x = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
int y = get_global_id(1);
__global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) + y * input_stride_y;
__global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) + y * output_stride_y;
VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE)
res = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)input_addr), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE));
// Convert input into F32 in order to perform quantized multiplication
#if defined(PROD) && defined(OFFSET) && defined(SCALE)
VEC_DATA_TYPE(float, VEC_SIZE)
res_f = DEQUANTIZE(res, OFFSET, SCALE, DATA_TYPE_PROMOTED, VEC_SIZE);
#endif // defined(PROD) && defined(OFFSET) && defined(SCALE)
#if defined(SUM_SQUARE)
res *= res;
#endif // defined(SUM_SQUARE)
for(unsigned int y = 1; y < HEIGHT; ++y)
{
VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE)
in = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input_addr + y * input_stride_y)), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE));
#if defined(MIN)
res = select(res, in, ISLESS(in, res));
#elif defined(MAX)
res = select(res, in, ISGREATER(in, res));
#else // !(defined(MAX) || defined(MIN))
#if defined(SUM_SQUARE)
in *= in;
#endif // defined(SUM_SQUARE)
#if defined(PROD)
#if defined(OFFSET) && defined(SCALE)
res_f *= DEQUANTIZE(in, OFFSET, SCALE, DATA_TYPE_PROMOTED, VEC_SIZE);
#else // !(defined(OFFSET) && defined(SCALE))
res *= in;
#endif // defined(OFFSET) && defined(SCALE)
#else // !defined(PROD)
res += in;
#endif // defined(PROD)
#endif // defined(MAX) || defined(MIN)
}
#if defined(MEAN)
res /= HEIGHT;
#endif // defined(MEAN)
// Subtract the offsets in case of quantized SUM
#if defined(SUM) && defined(OFFSET) && defined(SCALE)
res -= (HEIGHT - 1) * OFFSET;
#endif // defined(OFFSET) && defined(OFFSET) && defined(SCALE)
// Re-quantize
#if defined(PROD) && defined(OFFSET) && defined(SCALE)
res = QUANTIZE(res_f, OFFSET, SCALE, DATA_TYPE_PROMOTED, VEC_SIZE);
#endif // defined(PROD) && defined(OFFSET) && defined(SCALE)
// Store result
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
res0 = CONVERT_SAT(res, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE));
STORE_VECTOR_SELECT(res, DATA_TYPE, output_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0);
}
#endif // defined(HEIGHT)
#if defined(DEPTH)
/** This kernel performs reduction on z-axis.
*
* @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note The depth size must be passed at compile time using -DDEPTH e.g. -DDEPTH=128
*
* @param[in] input_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/S32/F16/F32
* @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] output_ptr The local buffer to hold sumed values. Supported data types: same as @p input_ptr
* @param[in] output_stride_x Stride of the output tensor in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y Stride of the output tensor in Y dimension (in bytes)
* @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z Stride of the output tensor in Z dimension (in bytes)
* @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor
*/
__kernel void reduction_operation_z(
TENSOR3D_DECLARATION(input),
TENSOR3D_DECLARATION(output))
{
int x = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
int y = get_global_id(1);
int z = get_global_id(2);
__global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) + y * input_stride_y + z * input_stride_z;
__global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) + y * output_stride_y + z * output_stride_z;
VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE)
res = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)input_addr), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE));
// Convert input into F32 in order to perform quantized multiplication
#if defined(PROD) && defined(OFFSET) && defined(SCALE)
VEC_DATA_TYPE(float, VEC_SIZE)
res_f = DEQUANTIZE(res, OFFSET, SCALE, DATA_TYPE_PROMOTED, VEC_SIZE);
#endif // defined(PROD) && defined(OFFSET) && defined(SCALE)
#if defined(SUM_SQUARE)
res *= res;
#endif // defined(SUM_SQUARE)
for(unsigned int z = 1; z < DEPTH; ++z)
{
VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE)
in = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input_addr + z * input_stride_z)), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE));
#if defined(MIN)
res = select(res, in, ISLESS(in, res));
#elif defined(MAX)
res = select(res, in, ISGREATER(in, res));
#else // !(defined(MAX) || defined(MIN))
#if defined(SUM_SQUARE)
in *= in;
#endif // defined(SUM_SQUARE)
#if defined(PROD)
#if defined(OFFSET) && defined(SCALE)
res_f *= DEQUANTIZE(in, OFFSET, SCALE, DATA_TYPE_PROMOTED, VEC_SIZE);
#else // !(defined(OFFSET) && defined(SCALE))
res *= in;
#endif // defined(OFFSET) && defined(SCALE)
#else // !defined(PROD)
res += in;
#endif // defined(PROD)
#endif // defined(MAX) || defined(MIN)
}
#if defined(MEAN)
res /= DEPTH;
#endif // defined(MEAN)
// Subtract the offsets in case of quantized SUM
#if defined(SUM) && defined(OFFSET) && defined(SCALE)
res -= (DEPTH - 1) * OFFSET;
#endif // defined(OFFSET) && defined(OFFSET) && defined(SCALE)
// Re-quantize
#if defined(PROD) && defined(OFFSET) && defined(SCALE)
res = QUANTIZE(res_f, OFFSET, SCALE, DATA_TYPE_PROMOTED, VEC_SIZE);
#endif // defined(PROD) && defined(OFFSET) && defined(SCALE)
// Store result
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
res0 = CONVERT_SAT(res, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE));
STORE_VECTOR_SELECT(res, DATA_TYPE, output_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0);
}
#endif /* defined(DEPTH) */
#if defined(BATCH) && defined(DEPTH)
/** This kernel performs reduction on w-axis.
*
* @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note The batch size must be passed at compile time using -DBATCH e.g. -DBATCH=128
* @note The depth size must be passed at compile time using -DBATCH e.g. -DDEPTH=128
*
* @param[in] input_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/S32/F16/F32
* @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes)
* @param[in] input_step_w input_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] output_ptr The local buffer to hold sumed values. Supported data types: same as @p input_ptr
* @param[in] output_stride_x Stride of the output tensor in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y Stride of the output tensor in Y dimension (in bytes)
* @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z Stride of the output tensor in Z dimension (in bytes)
* @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_stride_w Stride of the output tensor in W dimension (in bytes)
* @param[in] output_step_w output_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor
*/
__kernel void reduction_operation_w(
TENSOR4D_DECLARATION(input),
TENSOR4D_DECLARATION(output))
{
int x = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
int y = get_global_id(1);
int z = get_global_id(2);
__global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) + y * input_stride_y + (z % DEPTH) * input_stride_z + (z / DEPTH) * input_stride_w;
__global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) + y * output_stride_y + (z % DEPTH) * output_stride_z + (z / DEPTH) * output_stride_z;
VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE)
res = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)input_addr), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE));
// Convert input into F32 in order to perform quantized multiplication
#if defined(PROD) && defined(OFFSET) && defined(SCALE)
VEC_DATA_TYPE(float, VEC_SIZE)
res_f = DEQUANTIZE(res, OFFSET, SCALE, DATA_TYPE_PROMOTED, VEC_SIZE);
#endif // defined(PROD) && defined(OFFSET) && defined(SCALE)
#if defined(SUM_SQUARE)
res *= res;
#endif // defined(SUM_SQUARE)
for(unsigned int w = 1; w < BATCH; ++w)
{
VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE)
in = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input_addr + w * input_stride_w)), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE));
#if defined(MIN)
res = select(res, in, ISLESS(in, res));
#elif defined(MAX)
res = select(res, in, ISGREATER(in, res));
#else // !(defined(MAX) || defined(MIN))
#if defined(SUM_SQUARE)
in *= in;
#endif // defined(SUM_SQUARE)
#if defined(PROD)
#if defined(OFFSET) && defined(SCALE)
res_f *= DEQUANTIZE(in, OFFSET, SCALE, DATA_TYPE_PROMOTED, VEC_SIZE);
#else // !(defined(OFFSET) && defined(SCALE))
res *= in;
#endif // defined(OFFSET) && defined(SCALE)
#else // !defined(PROD)
res += in;
#endif //defined(PROD)
#endif // defined(MAX) || defined(MIN)
}
#if defined(MEAN)
res /= BATCH;
#endif // defined(MEAN)
// Subtract the offsets in case of quantized SUM
#if defined(SUM) && defined(OFFSET) && defined(SCALE)
res -= (BATCH - 1) * OFFSET;
#endif // defined(OFFSET) && defined(OFFSET) && defined(SCALE)
// Re-quantize
#if defined(PROD) && defined(OFFSET) && defined(SCALE)
res = QUANTIZE(res_f, OFFSET, SCALE, DATA_TYPE_PROMOTED, VEC_SIZE);
#endif // defined(PROD) && defined(OFFSET) && defined(SCALE)
// Store result
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
res0 = CONVERT_SAT(res, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE));
STORE_VECTOR_SELECT(res, DATA_TYPE, output_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0);
}
#endif /* defined(BATCH) && defined(DEPTH) */