blob: 5b9f182bcb8f0f84a424ad80bba39fce7013791b [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NEFullyConnectedLayer.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include <algorithm>
#include <cmath>
using namespace arm_compute;
using namespace arm_compute::misc::shape_calculator;
NEFullyConnectedLayerReshapeWeights::NEFullyConnectedLayerReshapeWeights(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)), _transpose_kernel(), _transpose1xW_kernel(), _transpose_output(), _transpose_weights(false), _is_batched_fc_layer(false)
{
}
void NEFullyConnectedLayerReshapeWeights::configure(const ITensor *input, ITensor *output, bool transpose_weights, bool is_batched_fc_layer)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
// Perform validate step
ARM_COMPUTE_ERROR_THROW_ON(NEFullyConnectedLayerReshapeWeights::validate(input->info(), output->info(), transpose_weights, is_batched_fc_layer));
_transpose_weights = transpose_weights;
_is_batched_fc_layer = is_batched_fc_layer;
// Check if we need to transpose the weights
if(_transpose_weights)
{
if(_is_batched_fc_layer)
{
// Initialize the output tensor for transpose
_transpose_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_transposed_shape(*input->info())));
_memory_group.manage(&_transpose_output);
_transpose_kernel.configure(input, &_transpose_output);
// Configure transpose 1xW kernel
_transpose1xW_kernel.configure(&_transpose_output, output);
// Allocate temporary tensor used for transposing the weights
_transpose_output.allocator()->allocate();
}
else
{
_transpose_kernel.configure(input, output);
}
}
else
{
if(_is_batched_fc_layer)
{
// Configure transpose 1xW kernel
_transpose1xW_kernel.configure(input, output);
}
}
}
Status NEFullyConnectedLayerReshapeWeights::validate(const ITensorInfo *input, const ITensorInfo *output, bool transpose_weights, bool is_batched_fc_layer)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(!transpose_weights && !is_batched_fc_layer, "Configuration transpose_weights=false & is_batched_fc_layer=false not supported");
if(transpose_weights)
{
if(is_batched_fc_layer)
{
std::unique_ptr<ITensorInfo> use_output = output->clone();
use_output->set_is_resizable(true).reset_padding().set_tensor_shape(compute_transposed_shape(*input));
ARM_COMPUTE_RETURN_ON_ERROR(NETransposeKernel::validate(input, use_output.get()));
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMTranspose1xWKernel::validate(use_output.get(), output));
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(NETransposeKernel::validate(input, output));
}
}
else
{
if(is_batched_fc_layer)
{
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMTranspose1xWKernel::validate(input, output));
}
}
return Status{};
}
void NEFullyConnectedLayerReshapeWeights::run()
{
_memory_group.acquire();
if(_transpose_weights)
{
NEScheduler::get().schedule(&_transpose_kernel, Window::DimY);
}
if(_is_batched_fc_layer)
{
NEScheduler::get().schedule(&_transpose1xW_kernel, Window::DimY);
}
_memory_group.release();
}
NEFullyConnectedLayer::NEFullyConnectedLayer(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)), _im2col_kernel(), _reshape_weights_function(), _interleave4x4_kernel(), _mm_kernel(), _accumulate_biases_kernel(), _im2col_output(),
_interleave4x4_output(), _reshape_weights_output(), _original_weights(nullptr), _is_batched_fc_layer(false), _linearize_input(false), _accumulate_biases(false), _is_prepared(false)
{
}
void NEFullyConnectedLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, bool transpose_weights, bool are_weights_reshaped)
{
// With the Fully Connected layer we can have 4 different cases:
// 1) Convolution layer -> Fully Connected layer without batches
// 2) Fully Connected layer -> Fully Connected layer without batches
// 3) Convolution layer -> Fully Connected layer with batches
// 4) Fully Connected layer -> Fully Connected layer with batches
// Expected shape before transpose and reshaping
// Input: In x B (In and B can be multi-dimensional)
// Weights: flat(In) x Out
// Biases: Out
// Output: Out x B (B can be multi-dimensional)
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
// Perform validate step
ARM_COMPUTE_ERROR_THROW_ON(NEFullyConnectedLayer::validate(input->info(),
weights->info(),
biases != nullptr ? biases->info() : nullptr,
output->info(),
transpose_weights,
are_weights_reshaped));
const int num_batch_dimensions = std::max(0, static_cast<int>(output->info()->tensor_shape().num_dimensions()) - 1);
const int num_input_dimensions = input->info()->tensor_shape().num_dimensions() - num_batch_dimensions;
const size_t linear_input_size = input->info()->tensor_shape().total_size_lower(num_input_dimensions);
_original_weights = weights;
_linearize_input = (input->info()->tensor_shape().x() != linear_input_size) || (num_input_dimensions > 1 && linear_input_size == 1);
_accumulate_biases = biases != nullptr;
_is_batched_fc_layer = num_batch_dimensions > 0;
_is_prepared = are_weights_reshaped || (!transpose_weights && !_is_batched_fc_layer);
const size_t interleave_width = 16 / input->info()->element_size();
const ITensor *weights_to_use = weights;
if(!_is_prepared)
{
weights_to_use = &_reshape_weights_output;
_reshape_weights_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_fully_connected_reshaped_weights_shape(weights->info(),
transpose_weights,
_is_batched_fc_layer, interleave_width)));
// Reshape the weights
_reshape_weights_function.configure(weights, &_reshape_weights_output, transpose_weights, _is_batched_fc_layer);
}
const ITensor *multiply_input = input;
if(_linearize_input)
{
_im2col_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_im2col_fc_shape(input->info(), num_input_dimensions)));
// Configure im2col kernel
_memory_group.manage(&_im2col_output);
_im2col_kernel.configure(input, &_im2col_output, Size2D(1, 1), PadStrideInfo(1, 1, 0, 0), false, true);
multiply_input = &_im2col_output;
}
int m = multiply_input->info()->dimension(1);
int k = multiply_input->info()->dimension(0);
if(_is_batched_fc_layer)
{
_interleave4x4_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_interleaved_shape(*multiply_input->info())));
// Configure interleave4x4 kernel
_memory_group.manage(&_interleave4x4_output);
_interleave4x4_kernel.configure(multiply_input, &_interleave4x4_output);
multiply_input = &_interleave4x4_output;
}
// Configure matrix multiply kernel
_mm_kernel.configure(multiply_input, weights_to_use, output, 1.0f, _is_batched_fc_layer, GEMMReshapeInfo(m, 0 /* no transpose */, k));
if(_accumulate_biases)
{
// Configure accumulate biases kernel
_accumulate_biases_kernel.configure(output, biases);
}
if(_linearize_input)
{
_im2col_output.allocator()->allocate();
}
if(_is_batched_fc_layer)
{
_interleave4x4_output.allocator()->allocate();
}
}
Status NEFullyConnectedLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, bool transpose_weights, bool are_weights_reshaped)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT_POSITION(input, weights, output);
const int num_batch_dimensions = std::max(0, static_cast<int>(output->tensor_shape().num_dimensions()) - 1);
const int num_input_dimensions = input->tensor_shape().num_dimensions() - num_batch_dimensions;
const size_t linear_input_size = input->tensor_shape().total_size_lower(num_input_dimensions);
const bool linearize_input = (input->tensor_shape().x() != linear_input_size) || (num_input_dimensions > 1 && linear_input_size == 1);
const bool accumulate_biases = biases != nullptr;
const bool is_batched_fc_layer = num_batch_dimensions > 0;
ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape().total_size_upper(num_input_dimensions) != output->tensor_shape().total_size_upper(1));
ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 2);
const size_t interleave_width = 16 / input->element_size();
const ITensorInfo *weights_to_use = weights;
std::unique_ptr<ITensorInfo> reshape_weights_output = input->clone();
if(!are_weights_reshaped && (transpose_weights || is_batched_fc_layer))
{
reshape_weights_output->set_tensor_shape(compute_fully_connected_reshaped_weights_shape(weights, transpose_weights, is_batched_fc_layer, interleave_width));
ARM_COMPUTE_RETURN_ON_ERROR(NEFullyConnectedLayerReshapeWeights::validate(weights, reshape_weights_output.get(), transpose_weights, is_batched_fc_layer));
weights_to_use = reshape_weights_output.get();
}
// Check correct shape of weights
if(is_batched_fc_layer)
{
// Transpose + Transpose1xW
ARM_COMPUTE_RETURN_ERROR_ON(weights_to_use->tensor_shape().x() != linear_input_size * interleave_width);
ARM_COMPUTE_RETURN_ERROR_ON(weights_to_use->tensor_shape().y() != static_cast<unsigned int>(std::ceil(static_cast<float>(output->tensor_shape().x()) / interleave_width)));
}
else
{
// Transpose
ARM_COMPUTE_RETURN_ERROR_ON(weights_to_use->tensor_shape().x() != output->tensor_shape().x());
ARM_COMPUTE_RETURN_ERROR_ON(weights_to_use->tensor_shape().y() != linear_input_size);
}
const ITensorInfo *multiply_input = input;
std::unique_ptr<ITensorInfo> im2col_output = input->clone();
std::unique_ptr<ITensorInfo> interleave4x4_output = input->clone();
if(linearize_input)
{
im2col_output->set_tensor_shape(compute_im2col_fc_shape(input, num_input_dimensions));
ARM_COMPUTE_RETURN_ON_ERROR(NEIm2ColKernel::validate(input, im2col_output.get(), Size2D(1, 1), PadStrideInfo(1, 1, 0, 0), false, true));
multiply_input = im2col_output.get();
}
int m = multiply_input->dimension(1);
int k = multiply_input->dimension(0);
if(is_batched_fc_layer)
{
interleave4x4_output->set_tensor_shape(compute_interleaved_shape(*multiply_input));
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMInterleave4x4Kernel::validate(multiply_input, interleave4x4_output.get()));
multiply_input = interleave4x4_output.get();
}
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMMatrixMultiplyKernel::validate(multiply_input, weights_to_use, output, 1.0f, is_batched_fc_layer, GEMMReshapeInfo(m, 0 /* no transpose */, k)));
if(accumulate_biases)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
ARM_COMPUTE_RETURN_ERROR_ON(biases->tensor_shape().x() != output->tensor_shape().x());
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMMatrixAccumulateBiasesKernel::validate(output, biases));
}
return Status{};
}
void NEFullyConnectedLayer::run()
{
prepare();
_memory_group.acquire();
// Linearize input if it comes from a convolutional layer
if(_linearize_input)
{
NEScheduler::get().schedule(&_im2col_kernel, Window::DimY);
}
// Interleave input
if(_is_batched_fc_layer)
{
NEScheduler::get().schedule(&_interleave4x4_kernel, Window::DimY);
}
// Run matrix multiply
NEScheduler::get().schedule(&_mm_kernel, _is_batched_fc_layer ? Window::DimY : Window::DimX);
// Accumulate biases if provided
if(_accumulate_biases)
{
NEScheduler::get().schedule(&_accumulate_biases_kernel, Window::DimY);
}
_memory_group.release();
}
void NEFullyConnectedLayer::prepare()
{
// Reshape of the weights (happens only once)
if(!_is_prepared)
{
ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
// Run weights reshape, clean internal tensors and mark original weights tensor as unused
_reshape_weights_output.allocator()->allocate();
_reshape_weights_function.run();
_reshape_weights_function = NEFullyConnectedLayerReshapeWeights();
_original_weights->mark_as_unused();
_is_prepared = true;
}
}