blob: f03bc49ed3be0a4721f748223083500b27fe5853 [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEIm2ColKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include <arm_neon.h>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <tuple>
using namespace arm_compute;
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const Size2D &kernel_dims, const PadStrideInfo &conv_info,
bool has_bias, bool is_fully_connected, bool is_flatten, const Size2D &dilation)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() == DataType::QASYMM8 && has_bias);
ARM_COMPUTE_RETURN_ERROR_ON((dilation.x() < 1) || (dilation.y() < 1));
TensorShape expected_output_shape;
if(is_flatten) /* Called by FlattenLayer */
{
expected_output_shape = misc::shape_calculator::compute_im2col_flatten_shape(input);
}
else if(!is_fully_connected) /* Called by ConvolutionLayer */
{
expected_output_shape = misc::shape_calculator::compute_im2col_conv_shape(input, kernel_dims, conv_info, has_bias, dilation);
}
else /* Called by FullyConnectedLayer */
{
const int num_batch_dimensions = std::max(0, static_cast<int>(output->tensor_shape().num_dimensions()) - 1);
const int num_input_dimensions = input->tensor_shape().num_dimensions() - num_batch_dimensions;
expected_output_shape = misc::shape_calculator::compute_im2col_fc_shape(input, num_input_dimensions);
}
TensorInfo expected_output = output->clone()->set_tensor_shape(expected_output_shape);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&expected_output, output);
return Status{};
}
template <typename T, bool has_pads>
inline void linearize_volume(const uint8_t *const in_ptr,
T *out_ptr,
bool has_bias,
int top_left_x,
int top_left_y,
int kernel_width,
int kernel_height,
int kernel_depth,
int input_w,
int input_h,
int input_stride_x,
int input_stride_y,
int input_stride_z,
int pad_value,
int dilation_x,
int dilation_y)
{
const int kernel_size2 = kernel_width * kernel_height;
const int x_e = top_left_x + kernel_width * dilation_x;
const int y_e = top_left_y + kernel_height * dilation_y;
// Linearize volume
int d = 0;
// This for loop linearize a volume with 3 slices. This allows:
// 1) to reduce the iterations of the outer for loop "d"
// 2) to have an optimized im2col for the first convolution layer where usually we have 3 IFMs
for(; d <= (kernel_depth - 3); d += 3)
{
for(int y = top_left_y; y < y_e; y += dilation_y)
{
if((y < 0 || y >= input_h) && has_pads)
{
// All the values will be the offset (will be zeros when not quantized)
for(int x = top_left_x; x < x_e; x += dilation_x, ++out_ptr)
{
*(out_ptr + 0 * kernel_size2) = pad_value;
*(out_ptr + 1 * kernel_size2) = pad_value;
*(out_ptr + 2 * kernel_size2) = pad_value;
}
}
else
{
for(int x = top_left_x; x < x_e; x += dilation_x, ++out_ptr)
{
if((x < 0 || x >= input_w) && has_pads)
{
*(out_ptr + 0 * kernel_size2) = pad_value;
*(out_ptr + 1 * kernel_size2) = pad_value;
*(out_ptr + 2 * kernel_size2) = pad_value;
}
else
{
*(out_ptr + 0 * kernel_size2) = *(reinterpret_cast<const T *>(in_ptr + ((d + 0) * input_stride_z + y * input_stride_y + x * input_stride_x)));
*(out_ptr + 1 * kernel_size2) = *(reinterpret_cast<const T *>(in_ptr + ((d + 1) * input_stride_z + y * input_stride_y + x * input_stride_x)));
*(out_ptr + 2 * kernel_size2) = *(reinterpret_cast<const T *>(in_ptr + ((d + 2) * input_stride_z + y * input_stride_y + x * input_stride_x)));
}
}
}
}
out_ptr += 2 * kernel_size2;
}
// Left over
for(; d < kernel_depth; d++)
{
for(int y = top_left_y; y < y_e; y += dilation_y)
{
if((y < 0 || y >= input_h) && has_pads)
{
// All the values will be the offset (will be zeros when not quantized)
memset(out_ptr, pad_value, kernel_width * sizeof(T));
out_ptr += kernel_width;
}
else
{
for(int x = top_left_x; x < x_e; x += dilation_x, ++out_ptr)
{
if((x < 0 || x >= input_w) && has_pads)
{
*out_ptr = pad_value;
}
else
{
*out_ptr = *(reinterpret_cast<const T *>(in_ptr + (d * input_stride_z + y * input_stride_y + x * input_stride_x)));
}
}
}
}
}
// Append 1 if the convolution layer has biases
if(has_bias)
{
*out_ptr = static_cast<T>(1);
}
}
} // namespace
template <typename T, bool has_pads>
void NEIm2ColKernel::run_generic(const Window &window)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
const DataLayout data_layout = _input->info()->data_layout();
const unsigned int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const unsigned int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
const unsigned int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
const int kernel_depth = _input->info()->dimension(channel_idx);
const int input_w = _input->info()->dimension(width_idx);
const int input_h = _input->info()->dimension(height_idx);
const int input_stride_x = _input->info()->strides_in_bytes()[width_idx];
const int input_stride_y = _input->info()->strides_in_bytes()[height_idx];
const int input_stride_z = _input->info()->strides_in_bytes()[channel_idx];
const int offset = is_data_type_quantized(_input->info()->data_type()) ? _input->info()->quantization_info().offset : 0;
int pad_left = 0;
int pad_top = 0;
int stride_x = 0;
int stride_y = 0;
pad_left = _conv_info.pad_left();
pad_top = _conv_info.pad_top();
std::tie(stride_x, stride_y) = _conv_info.stride();
// Setup input window
const int start_x = -pad_left;
const int start_y = -pad_top;
Window window_in_out(window);
// The first three dimensions of the input and output are increased by the inner loops
window_in_out.set(Window::DimX, Window::Dimension(0, 0, 0));
window_in_out.set(Window::DimY, Window::Dimension(0, 0, 0));
window_in_out.set(Window::DimZ, Window::Dimension(0, 0, 0));
// Create iterators
Iterator in(_input, window_in_out);
Iterator out(_output, window_in_out);
execute_window_loop(window, [&](const Coordinates & id)
{
const int top_left_x = id[width_idx] * stride_x + start_x;
const int top_left_y = id[height_idx] * stride_y + start_y;
// Get pointers
const uint8_t *const input_ptr = in.ptr();
auto output_ptr = reinterpret_cast<T *>(out.ptr() + (id[width_idx] + id[height_idx] * _convolved_dims.first) * _output->info()->strides_in_bytes().y());
// Linearize volume
linearize_volume<T, has_pads>(input_ptr,
output_ptr,
_has_bias,
top_left_x,
top_left_y,
static_cast<int>(_kernel_width),
static_cast<int>(_kernel_height),
kernel_depth,
input_w,
input_h,
input_stride_x,
input_stride_y,
input_stride_z,
offset,
_dilation.x(),
_dilation.y());
},
in, out);
}
template <typename T>
void NEIm2ColKernel::run_reduced(const Window &window)
{
const size_t in_width = _input->info()->dimension(0);
const size_t in_height = _input->info()->dimension(1);
const size_t out_step_x = in_width * _input->info()->element_size();
const size_t out_step_y = out_step_x * in_height;
const size_t out_width = _output->info()->dimension(0);
Window in_window(window);
in_window.set(Window::DimX, Window::Dimension(0, 1, 1));
Window out_window;
out_window.use_tensor_dimensions(_output->info()->tensor_shape());
out_window.set(Window::DimX, Window::Dimension(out_window.x().start(), out_window.x().end(), in_width));
Window in_slice = in_window.first_slice_window_3D();
Window out_slice = out_window.first_slice_window_1D();
do
{
Iterator in(_input, in_slice);
Iterator out(_output, out_slice);
uint8_t *out_ptr = out.ptr();
execute_window_loop(in_slice, [&](const Coordinates & id)
{
memcpy(out_ptr + id.y() * out_step_x + id.z() * out_step_y, in.ptr(), out_step_x);
},
in);
// Add bias
if(_has_bias)
{
*(reinterpret_cast<T *>(out_ptr) + out_width - 1) = static_cast<T>(1);
}
}
while(in_window.slide_window_slice_3D(in_slice) && out_window.slide_window_slice_1D(out_slice));
}
NEIm2ColKernel::NEIm2ColKernel()
: _func(), _input(nullptr), _output(nullptr), _convolved_dims(), _conv_info(), _kernel_width(0), _kernel_height(0), _has_bias(false), _dilation(1U, 1U)
{
}
void NEIm2ColKernel::configure(const ITensor *input, ITensor *output, const Size2D &kernel_dims, const PadStrideInfo &conv_info,
bool has_bias, bool is_fully_connected, bool is_flatten, const Size2D &dilation)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
// Perform validation step
ARM_COMPUTE_UNUSED(is_fully_connected, is_flatten);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), kernel_dims, conv_info, has_bias, is_fully_connected, is_flatten, dilation));
const DataLayout data_layout = input->info()->data_layout();
const unsigned int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const unsigned int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
const unsigned int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
_input = input;
_output = output;
_conv_info = conv_info;
_kernel_width = kernel_dims.width;
_kernel_height = kernel_dims.height;
_dilation = dilation;
_convolved_dims = scaled_dimensions(input->info()->dimension(width_idx), input->info()->dimension(height_idx),
_kernel_width, _kernel_height,
_conv_info, _dilation);
_has_bias = has_bias;
unsigned int stride_x = 0;
unsigned int stride_y = 0;
std::tie(stride_x, stride_y) = conv_info.stride();
bool run_img2col_reduced = (output->info()->dimension(0) == (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2))) && (TensorShape::num_max_dimensions >= 4)
&& (std::equal(input->info()->tensor_shape().cbegin() + 3,
input->info()->tensor_shape().cend(),
output->info()->tensor_shape().cbegin() + 1))
&& ((stride_x == 1) && (stride_y == 1) && !conv_info.has_padding())
&& ((dilation.x() == 1) && (dilation.y() == 1));
Window window = calculate_max_window(*input->info(), Steps());
if(run_img2col_reduced)
{
switch(_input->info()->data_type())
{
case DataType::F32:
_func = &NEIm2ColKernel::run_reduced<float>;
break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
_func = &NEIm2ColKernel::run_reduced<float16_t>;
break;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
case DataType::QASYMM8:
_func = &NEIm2ColKernel::run_reduced<qasymm8_t>;
break;
default:
ARM_COMPUTE_ERROR("Data type not supported");
break;
}
}
else
{
switch(_input->info()->data_type())
{
case DataType::F32:
_func = (!conv_info.has_padding()) ? &NEIm2ColKernel::run_generic<float, false> : &NEIm2ColKernel::run_generic<float, true>;
break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
_func = (!conv_info.has_padding()) ? &NEIm2ColKernel::run_generic<float16_t, false> : &NEIm2ColKernel::run_generic<float16_t, true>;
break;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
case DataType::QASYMM8:
_func = (!conv_info.has_padding()) ? &NEIm2ColKernel::run_generic<qasymm8_t, false> : &NEIm2ColKernel::run_generic<qasymm8_t, true>;
break;
default:
ARM_COMPUTE_ERROR("Data type not supported");
break;
}
window.set(width_idx, Window::Dimension(0, _convolved_dims.first, 1));
window.set(height_idx, Window::Dimension(0, _convolved_dims.second, 1));
window.set(channel_idx, Window::Dimension(0, 1, 1));
}
// The NEIm2ColKernel doesn't need padding so update_window_and_padding() can be skipped
output->info()->set_valid_region(ValidRegion(Coordinates(), output->info()->tensor_shape()));
IKernel::configure(window);
}
Status NEIm2ColKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const Size2D &kernel_dims, const PadStrideInfo &conv_info,
bool has_bias, bool is_fully_connected, bool is_flatten, const Size2D &dilation)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, kernel_dims, conv_info, has_bias, is_fully_connected, is_flatten, dilation));
return Status{};
}
void NEIm2ColKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
(this->*_func)(window);
}