blob: 795ffc5d1c78b7cf5120d38415e89380d399bc69 [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NEGEMM.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/runtime/NEON/AssemblyHelper.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "arm_compute/runtime/TensorAllocator.h"
#include "support/ToolchainSupport.h"
#include <cmath>
namespace arm_compute
{
NEGEMM::NEGEMM(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)), _interleave_kernel(), _transpose_kernel(), _mm_kernel(), _asm_glue(), _ma_kernel(), _tmp_a(), _tmp_b(), _workspace(), _B_pretransposed(),
_original_b(nullptr), _run_vector_matrix_multiplication(false), _run_addition(false), _reshape_b_only_on_first_run(false), _is_prepared(false)
{
}
void NEGEMM::configure(const ITensor *a, const ITensor *b, const ITensor *c, ITensor *d, float alpha, float beta, const GEMMInfo &gemm_info)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::F32, DataType::F16);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(a, b, d);
ARM_COMPUTE_ERROR_ON_MSG(a->info()->dimension(0) != b->info()->dimension(1), "The product AB is defined only if the number of columns in A is equal to the number of rows in B");
ARM_COMPUTE_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported");
ARM_COMPUTE_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported");
if(c != nullptr)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(c, 1, DataType::F32, DataType::F16);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(a, c);
ARM_COMPUTE_ERROR_ON_MSG(a->info()->dimension(1) != c->info()->dimension(1), "The C matrix must have the same number of rows as the matrix A");
ARM_COMPUTE_ERROR_ON_MSG(b->info()->dimension(0) != c->info()->dimension(0), "The C matrix must have the same number of columns as the matrix B");
ARM_COMPUTE_ERROR_ON_MSG(c->info()->dimension(0) != d->info()->dimension(0), "The C matrix must have the same number of rows as the output matrix");
ARM_COMPUTE_ERROR_ON_MSG(c->info()->dimension(1) != d->info()->dimension(1), "The C matrix must have the same number of columns as the output matrix");
}
// Check if we need to reshape the matrix B only on the first run
_is_prepared = false;
_reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run();
_run_vector_matrix_multiplication = a->info()->dimension(1) < 2;
_original_b = b;
_asm_glue._optimised_kernel = nullptr;
const bool run_optimised = a->info()->data_type() == DataType::F32 && (c == nullptr || beta == 0.f)
&& setup_assembly_kernel(a, b, d, alpha, beta, _reshape_b_only_on_first_run, _workspace, _B_pretransposed, _memory_group, _asm_glue);
// Check if the first input tensor is a vector.
// If so, all the kernels for reshaping the tensors can be skipped
if(_run_vector_matrix_multiplication)
{
if(!run_optimised)
{
// Configure the matrix multiply kernel
_mm_kernel.configure(a, b, d, alpha, false);
}
// Configure matrix addition kernel
if(beta != 0 && c != nullptr)
{
_ma_kernel.configure(c, d, beta);
_run_addition = true;
}
}
else
{
if(!run_optimised)
{
TensorShape shape_tmp_a = a->info()->tensor_shape();
TensorShape shape_tmp_b = b->info()->tensor_shape();
shape_tmp_a.set(0, a->info()->dimension(0) * 4);
shape_tmp_a.set(1, std::ceil(a->info()->dimension(1) / 4.0f));
const unsigned int transpose_w = 16 / data_size_from_type(b->info()->data_type());
shape_tmp_b.set(0, b->info()->dimension(1) * transpose_w);
shape_tmp_b.set(1, std::ceil(b->info()->dimension(0) / static_cast<float>(transpose_w)));
TensorInfo info_a(shape_tmp_a, 1, a->info()->data_type());
TensorInfo info_b(shape_tmp_b, 1, b->info()->data_type());
_tmp_a.allocator()->init(info_a);
_tmp_b.allocator()->init(info_b);
// Manage intermediate buffers
_memory_group.manage(&_tmp_a);
if(!_reshape_b_only_on_first_run)
{
_memory_group.manage(&_tmp_b);
}
int m = a->info()->dimension(1);
int n = b->info()->dimension(0);
int k = a->info()->dimension(0);
// Configure interleave kernel
_interleave_kernel.configure(a, &_tmp_a);
// Configure transpose kernel
_transpose_kernel.configure(b, &_tmp_b);
// Configure matrix multiplication kernel
_mm_kernel.configure(&_tmp_a, &_tmp_b, d, alpha, true, GEMMReshapeInfo(m, n, k));
// Allocate once the all configure methods have been called
_tmp_a.allocator()->allocate();
if(!_reshape_b_only_on_first_run)
{
_tmp_b.allocator()->allocate();
}
// Configure matrix addition kernel
if(beta != 0 && c != nullptr)
{
_ma_kernel.configure(c, d, beta);
_run_addition = true;
}
}
}
}
void NEGEMM::run()
{
prepare();
if(_asm_glue._optimised_kernel != nullptr)
{
_memory_group.acquire();
_asm_glue.run();
_memory_group.release();
}
else
{
_memory_group.acquire();
if(!_run_vector_matrix_multiplication)
{
// Run interleave kernel
NEScheduler::get().schedule(&_interleave_kernel, Window::DimY);
if(!_reshape_b_only_on_first_run)
{
// Run transpose kernel
NEScheduler::get().schedule(&_transpose_kernel, Window::DimY);
}
}
NEScheduler::get().schedule(&_mm_kernel, _run_vector_matrix_multiplication ? Window::DimX : Window::DimY);
_memory_group.release();
// Run matrix addition kernel
if(_run_addition)
{
NEScheduler::get().schedule(&_ma_kernel, Window::DimY);
}
}
}
void NEGEMM::prepare()
{
if(!_is_prepared)
{
if(_asm_glue._optimised_kernel)
{
ARM_COMPUTE_ERROR_ON(!_original_b->is_used());
_asm_glue.prepare();
_original_b->mark_as_unused();
}
else if(_reshape_b_only_on_first_run && !_run_vector_matrix_multiplication && !_asm_glue._optimised_kernel)
{
ARM_COMPUTE_ERROR_ON(!_original_b->is_used());
_tmp_b.allocator()->allocate();
NEScheduler::get().schedule(&_transpose_kernel, Window::DimY);
_original_b->mark_as_unused();
}
_is_prepared = true;
}
}
} // namespace arm_compute