blob: b4025ffdafa3fa428cbdc56545e39dc4eb655406 [file] [log] [blame]
/*
* Copyright (c) 2019-2020 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayerNativeKernel.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/CLValidate.h"
#include "arm_compute/core/CL/ICLKernel.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "support/StringSupport.h"
namespace arm_compute
{
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const DWCWeightsKernelInfo &dwc_weights_info,
const DWCKernelInfo &dwc_info, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation,
const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts)
{
ARM_COMPUTE_UNUSED(dwc_info);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_LAYOUT_NOT_IN(input, DataLayout::NHWC);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON(depth_multiplier > 1 && dwc_weights_info.n0 != 1);
ARM_COMPUTE_RETURN_ERROR_ON(conv_info.stride().first < 1);
ARM_COMPUTE_RETURN_ERROR_ON(conv_info.stride().second < 1);
ARM_COMPUTE_RETURN_ERROR_ON((dilation.x() < 1) || (dilation.y() < 1));
const size_t idx_c = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL);
ARM_COMPUTE_UNUSED(idx_c);
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_c) != (input->dimension(idx_c) * depth_multiplier));
const TensorShape output_shape = arm_compute::misc::shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation);
const bool is_quantized = is_data_type_quantized(input->data_type());
if(biases != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != output_shape[idx_c]);
ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
if(is_quantized)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
}
}
if(is_quantized)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(output_multipliers, output_shifts);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_multipliers, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_shifts, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(output_multipliers->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(output_shifts->num_dimensions() > 1);
if(is_data_type_quantized_per_channel(weights->data_type()))
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QSYMM8_PER_CHANNEL);
ARM_COMPUTE_RETURN_ERROR_ON(output_shape[idx_c] != output_multipliers->dimension(0));
ARM_COMPUTE_RETURN_ERROR_ON(output_shape[idx_c] != output_shifts->dimension(0));
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
ARM_COMPUTE_RETURN_ERROR_ON(1 != output_multipliers->dimension(0));
ARM_COMPUTE_RETURN_ERROR_ON(1 != output_shifts->dimension(0));
}
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
}
if(output->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
if(is_data_type_quantized(input->data_type()))
{
const UniformQuantizationInfo iq_info = input->quantization_info().uniform();
const UniformQuantizationInfo wq_info = weights->quantization_info().uniform();
const UniformQuantizationInfo oq_info = (output->total_size() != 0) ? output->quantization_info().uniform() : iq_info;
float multiplier = iq_info.scale * wq_info.scale / oq_info.scale;
int output_multiplier = 0;
int output_shift = 0;
ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift));
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *weights, ITensorInfo *bias, ITensorInfo *output, const DWCWeightsKernelInfo &dwc_weights_info,
const DWCKernelInfo &dwc_info, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation,
ITensorInfo *output_multipliers, ITensorInfo *output_shifts)
{
ARM_COMPUTE_UNUSED(dwc_info);
// Get convolved dimensions
const TensorShape output_shape = arm_compute::misc::shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation);
auto_init_if_empty(*output, input->clone()->set_tensor_shape(output_shape).set_quantization_info(output->quantization_info()));
const unsigned int n0 = dwc_weights_info.n0;
// Configure kernel window
Window win = calculate_max_window(*output, Steps(n0));
// The following access windows are only valid in case of NHWC and because n0 must unit in case depth_multiplier > 1
AccessWindowHorizontal input_access(input, 0, n0);
AccessWindowHorizontal weights_access(weights, 0, n0);
AccessWindowHorizontal output_access(output, 0, n0);
bool window_changed = false;
if(bias != nullptr)
{
AccessWindowHorizontal bias_access(bias, 0, n0);
window_changed = update_window_and_padding(win, input_access, weights_access, bias_access, output_access);
}
else
{
window_changed = update_window_and_padding(win, input_access, weights_access, output_access);
}
if(is_data_type_quantized(input->data_type()))
{
if((output_multipliers != nullptr) && (output_shifts != nullptr))
{
AccessWindowHorizontal output_multipliers_access(output_multipliers, 0, n0);
AccessWindowHorizontal output_shifts_access(output_shifts, 0, n0);
window_changed = window_changed || update_window_and_padding(win, output_multipliers_access, output_shifts_access);
}
else
{
Status err = ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "output_multipliers and output_shifts must be non-nullptr for quantized input");
return std::make_pair(err, win);
}
}
output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
} // namespace
CLDepthwiseConvolutionLayerNativeKernel::CLDepthwiseConvolutionLayerNativeKernel()
: _input(nullptr),
_weights(nullptr),
_biases(nullptr),
_output(nullptr),
_depth_multiplier(1),
_output_multipliers(nullptr),
_output_shifts(nullptr),
_is_quantized(false)
{
}
void CLDepthwiseConvolutionLayerNativeKernel::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const DWCWeightsKernelInfo &dwc_weights_info,
const DWCKernelInfo &dwc_info, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation,
const ICLTensor *output_multipliers, const ICLTensor *output_shifts)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info(),
dwc_weights_info, dwc_info, conv_info, depth_multiplier, dilation,
(output_multipliers != nullptr) ? output_multipliers->info() : nullptr, (output_shifts != nullptr) ? output_shifts->info() : nullptr));
auto win_config = validate_and_configure_window(input->info(), weights->info(), biases != nullptr ? biases->info() : nullptr, output->info(),
dwc_weights_info, dwc_info, conv_info, depth_multiplier, dilation,
(output_multipliers != nullptr) ? output_multipliers->info() : nullptr, (output_shifts != nullptr) ? output_shifts->info() : nullptr);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
_input = input;
_output = output;
_weights = weights;
_biases = biases;
_depth_multiplier = depth_multiplier;
_output_multipliers = output_multipliers;
_output_shifts = output_shifts;
_is_quantized = is_data_type_quantized(input->info()->data_type());
const size_t idx_w = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH);
const size_t idx_h = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT);
const size_t weights_width = weights->info()->dimension(idx_w);
const size_t weights_height = weights->info()->dimension(idx_h);
CLBuildOptions build_opts;
build_opts.add_option_if(_biases != nullptr, "-DHAS_BIAS");
build_opts.add_option_if(_input->info()->tensor_shape().total_size_upper(3) > 1, "-DDST_DEPTH=" + support::cpp11::to_string(static_cast<int>(_output->info()->dimension(2))));
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(_input->info()->data_type()));
build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(dwc_info.activation_info.activation())));
build_opts.add_option("-DDEPTH_MULTIPLIER=" + support::cpp11::to_string(depth_multiplier));
build_opts.add_option("-DN0=" + support::cpp11::to_string(dwc_weights_info.n0));
build_opts.add_option("-DSRC_DIM1=" + support::cpp11::to_string(_input->info()->dimension(1)));
build_opts.add_option("-DSRC_DIM2=" + support::cpp11::to_string(_input->info()->dimension(2)));
build_opts.add_option("-DKERNEL_WIDTH=" + support::cpp11::to_string(weights_width));
build_opts.add_option("-DKERNEL_HEIGHT=" + support::cpp11::to_string(weights_height));
build_opts.add_option("-DCONV_PAD_TOP=" + support::cpp11::to_string(conv_info.pad_top()));
build_opts.add_option("-DCONV_PAD_LEFT=" + support::cpp11::to_string(conv_info.pad_left()));
build_opts.add_option("-DCONV_STRIDE_X=" + support::cpp11::to_string(conv_info.stride().first));
build_opts.add_option("-DCONV_STRIDE_Y=" + support::cpp11::to_string(conv_info.stride().second));
build_opts.add_option("-DDILATION_X=" + support::cpp11::to_string(dilation.x()));
build_opts.add_option("-DDILATION_Y=" + support::cpp11::to_string(dilation.y()));
std::string kernel_name = (_is_quantized) ? "dwc_MxN_native_quantized8_nhwc" : "dwc_MxN_native_fp_nhwc";
if(_is_quantized)
{
const UniformQuantizationInfo iq_info = _input->info()->quantization_info().uniform();
const UniformQuantizationInfo wq_info = _weights->info()->quantization_info().uniform();
const UniformQuantizationInfo oq_info = _output->info()->quantization_info().uniform();
build_opts.add_option("-DINPUT_OFFSET=" + support::cpp11::to_string(-iq_info.offset));
build_opts.add_option("-DWEIGHTS_OFFSET=" + support::cpp11::to_string(-wq_info.offset));
build_opts.add_option("-DOUTPUT_OFFSET=" + support::cpp11::to_string(oq_info.offset));
build_opts.add_option_if(is_data_type_quantized_per_channel(weights->info()->data_type()), "-DPER_CHANNEL_QUANTIZATION");
// Compute non-per-channel multiplier and shift anyway to make OpenCL kernel simpler
float multiplier = iq_info.scale * wq_info.scale / oq_info.scale;
int output_multiplier = 0;
int output_shift = 0;
quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
build_opts.add_option("-DOUTPUT_MULTIPLIER=" + support::cpp11::to_string(output_multiplier));
build_opts.add_option("-DOUTPUT_SHIFT=" + support::cpp11::to_string(output_shift));
if(dwc_info.activation_info.enabled())
{
const int a_val = quantize_qasymm8(dwc_info.activation_info.a(), oq_info);
const int b_val = quantize_qasymm8(dwc_info.activation_info.b(), oq_info);
const int o1 = oq_info.offset;
build_opts.add_option("-DA_VAL=" + support::cpp11::to_string(a_val));
build_opts.add_option("-DB_VAL=" + support::cpp11::to_string(b_val));
build_opts.add_option("-DCONST_0=" + support::cpp11::to_string(o1));
const float s1 = iq_info.scale;
build_opts.add_option("-DS1_VAL=" + float_to_string_with_full_precision(s1));
build_opts.add_option("-DO1_VAL=" + support::cpp11::to_string(o1));
}
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type()));
build_opts.add_option("-DWEIGHTS_TYPE=" + get_cl_type_from_data_type(weights->info()->data_type()));
}
else
{
build_opts.add_option_if(dwc_info.activation_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(dwc_info.activation_info.a()));
build_opts.add_option_if(dwc_info.activation_info.enabled(), "-DB_VAL=" + float_to_string_with_full_precision(dwc_info.activation_info.b()));
}
ICLKernel::configure_internal(win_config.second);
_kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));
// Set config_id for enabling LWS tuning
_config_id = kernel_name;
_config_id += "_";
_config_id += support::cpp11::to_string(input->info()->dimension(0));
_config_id += "_";
_config_id += support::cpp11::to_string(input->info()->dimension(1));
_config_id += "_";
_config_id += support::cpp11::to_string(input->info()->dimension(2));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(0));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(1));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(2));
_config_id += "_";
_config_id += string_from_data_type(input->info()->data_type());
}
Status CLDepthwiseConvolutionLayerNativeKernel::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
const DWCWeightsKernelInfo &dwc_weights_info, const DWCKernelInfo &dwc_info, const PadStrideInfo &conv_info,
unsigned int depth_multiplier, const Size2D &dilation, const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, weights, biases, output, dwc_weights_info, dwc_info, conv_info, depth_multiplier, dilation, output_multipliers, output_shifts));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), weights->clone().get(),
biases != nullptr ? biases->clone().get() : nullptr,
output->clone().get(), dwc_weights_info, dwc_info, conv_info, depth_multiplier, dilation,
output_multipliers != nullptr ? output_multipliers->clone().get() : nullptr,
output_shifts != nullptr ? output_shifts->clone().get() : nullptr)
.first);
return Status{};
}
void CLDepthwiseConvolutionLayerNativeKernel::run(const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
// Collapse window
Window window_collapsed = window.collapse(ICLKernel::window(), Window::DimZ);
Window slice_in = window.first_slice_window_4D();
Window slice_out = window_collapsed.first_slice_window_4D();
if(_depth_multiplier != 1)
{
ARM_COMPUTE_ERROR_ON(slice_out.x().step() != 1);
slice_out.set(Window::DimX, Window::Dimension(0, _input->info()->tensor_shape()[0], 1));
}
unsigned int idx = 2 * num_arguments_per_4D_tensor() + num_arguments_per_3D_tensor();
// Set output multipliers in case of quantized data type
if(_is_quantized)
{
add_1D_tensor_argument(idx, _output_multipliers, slice_in);
add_1D_tensor_argument(idx, _output_shifts, slice_in);
}
if(_biases != nullptr)
{
add_1D_tensor_argument(idx, _biases, slice_in);
}
do
{
idx = 0;
add_4D_tensor_argument(idx, _input, slice_in);
add_4D_tensor_argument(idx, _output, slice_out);
add_3D_tensor_argument(idx, _weights, slice_out);
enqueue(queue, *this, slice_out, lws_hint());
}
while(window_collapsed.slide_window_slice_4D(slice_out) && window.slide_window_slice_4D(slice_in));
}
} // namespace arm_compute